Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Розв’язання завдань з теми «Диференціальне числення функції однієї змінної».




 

Завдання 1.

Знайти границі функцій, не користуючись правилом Лопіталя.

а) .

Розв’язання. При чисельник і знаменник дробу прямують до нескінченності. Маємо невизначеність . Щоб розкрити її, поділимо чисельник і знаменник дробу на найвищу степінь , що зустрічається у членів дробу, тобто на :

.

Відповідь. 0.

 

б) .

Розв’язання. При чисельник і знаменник дробу прямують до нуля. Отже, маємо невизначеність . Для її розкриття позбавимось ірраціональності в чисельнику: помножимо чисельник і знаменник на і скористаємось формулою . Знаменник розкладемо на множники за формулою , де і - корені квадратного тричлена. Знайдемо їх:

; ; ;

, .

Отже, . Таким чином,

.

Відповідь. .

 

в) .

Розв’язання. При обчисленні цієї границі маємо невизначеність . Розкриваючи її, розкладемо знаменник на множники за формулою : і перепишемо границю так:

.

До останньої границі був застосований наслідок з першої важливої границі.

Відповідь. .

 

г) .

Розв’язання. При вираз у дужках прямує до 1, а показник степеня до . Маємо невизначеність . Щоб розкрити її, перетворимо границю так:

.

Відповідь. .

 

Завдання 2.

Знайти похідні функцій.

а) .

Розв’язання. За правилом диференціювання складеної функції маємо

.

При цьому використовувались наступні формули диференціювання: , , , , .

Відповідь. .

 

б) .

Розв’язання. Це рівняння задає функцію неявно. Щоб знайти похідну, продиференціюємо обидві його частини, пам’ятаючи, що є функція змінної :

,

,

.

Отримане рівняння розв’яжемо відносно :

,

,

,

.

Відповідь. .

 

в) .

Розв’язання. Для обчислення похідної такої функції (так званої степенево-показникової) використаємо логарифмічне диференціювання: прологарифмуємо обидві частини рівності . Отримаємо

.

Тепер, продиференціювавши ліву і праву частини останньої рівності, враховуючи, що , знаходимо

,

,

.

Звідки або

.

Відповідь. .

 

г) ,

Розв’язання. Функція задана параметрично. Її похідна обчислюється за формулою .

Знайдемо та

. Отже,

.

Друга похідна функції, заданої параметрично, знаходиться за формулою . Диференціюємо отриману похідну за змінною :

.

За допомогою наведеної вище формули дістанемо

.

Відповідь. ; .

 

Завдання 3.

Визначити диференціал функції , якщо .

Розв’язання. Диференціал функції обчислюється за формулою .

.

.

Відповідь. .

 

Завдання 4.

Методами диференціального числення дослідити функцію і за результатами дослідження побудувати її графік.

Розв’язання. Задана функція дробово-раціональна. Отже, вона визначена при всіх , крім точок і . Дослідимо поведінку функції в їх околі. Для цього обчислимо односторонні границі при і при :

;

;

;

.

Знайдені границі говорять про те, що обидві точки є точками розриву другого роду і визначають вертикальні асимптоти, рівняння яких і .

На інтервалах , , функція неперервна.

Знайдемо точки перетину графіка з осями координат:

а) з віссю : якщо , то ;

б) з віссю : якщо , то .

Отже, графік функції перетинає координатні осі в точці , тобто проходить через початок координат.

Знайдемо інтервали знакосталості функції. Розв’яжемо нерівність : :

--
+
--
+
 

Таким чином, на інтервалах і ; на інтервалах і . На інтервалах і графік функції розташований вище осі , а на інтервалах і нижче осі .

Функція непарна, оскільки

, тому її графік симетричний відносно початку координат. Подальше дослідження можна проводити для .

З’ясуємо поведінку функції при :

. Отже, горизонтальна асимптота відсутня.

Похилу асимптоту будемо шукати у вигляді :

,

Отже, - рівняння похилої асимптоти.

Дослідимо функцію на монотонність та екстремум:

1) .

2) З рівняння знайдемо критичні точки першого роду:

3) Враховуючи непарність функції, встановимо знак першої похідної на інтервалах , , .

 
 
+
+
--

Таким чином, функція зростає на інтервалах , ; спадає на інтервалі . В точці функція має максимум, рівний .

Знайдемо інтервали опуклості графіка функції і точки перегину:

1)

.

2) Розв’язуючи рівняння , знайдемо критичні точки другого роду:

3) Знак другої похідної встановимо на інтервалах , .

Таким чином, на інтервалі графік функції вгнутий, а на інтервалі - опуклий.

Враховуючи непарну симетрію кривої, точка є точкою перегину. Точка - точка розриву і не може бути точкою перегину.

За результатами дослідження будуємо графік функції для . Частина графіка для відображається за принципом непарної функції (поворотом на відносно початку координат).

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 465 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2487 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.