Проблема. Результаты консервативного лечения аневризм, осложненных внутричерепной гематомой (ВЧГ), неудовлетворительные - летальность составляет 50-85%. До настоящего времени существуют различия в хирургической тактике при разрывах артериальных аневризм, осложненных ВЧГ. Сложность выбора тактики обусловлена сочетанием гематомы с выраженным ангиоспазмом, риском повторного кровотечения из аневризмы у тяжелых больных, различной оценкой симптомов компрессии и дислокации мозга, трудностью выделения доминирующей причины тяжелого состояния при сочетании гематомы с вентрикулярным кровоизлиянием, ишемией мозга. Оценка влияния различных факторов на результаты хирургического лечения позволит определить тактику ведения больных с аневризмами в сочетании с внутричерепными гематомами, выявить причины неблагоприятных исходов хирургического лечения и прогнозировать исход операции. В связи с этим одной из задач является определение зависимости срока госпитализации от тяжести состояния пациентов при поступлении, оцениваемой по шкале Hunt-Hess. |
Поставленную задачу можно сформулировать следующим образом: определить влияние многоуровневого фактора на случайную величину. Рассмотрим более простой случай - влияние рациона питания на привес животных. Было проведено исследование на 4 группах животных: первая группа потребляла обычный рацион, вторая – питалась только макаронами, третья – мясом, четвертая – овощами. Изучаемым фактором является рацион питания, который имеет четыре уровня, случайная величина – это привес животных. Нужно определить есть ли разница хотя бы между двумя средними в этих группах.
Прежде чем приступить к решению данной задачи, вспомним, что дисперсия является характеристикой разброса случайной величины относительно среднего.
В идеале, внутри каждой группы вес животных должен бы быть одинаковым, так как они питаются одинаковым рационом (например, все едят овощи). В реальности внутри групп будет наблюдаться разброс в привесе, в связи с тем, что кроме рациона на вес животных влияют другие факторы: особенности обмена веществ, поведенческих реакций, стрессоустойчивость и др. Эти факторы, которые мы будем называть неучтенными факторами, приводят к появлению внутригрупповой дисперсии Dвнутргр.
Средние по группам также имеют разброс (относительно общей средней), который объясняется влиянием изучаемого фактора - разных рационов. Это приводит к появлению межгрупповой дисперсии Dмежгр.
Рассмотрим случай, приведенный на рисунке 22. Видно, что внутри групп разброс показателя веса больше, чем разброс средних значений по группам. Можно предположить, что вес животных в этих группах не сильно зависит от рациона питания, а на него больше влияют неучтенные в данном исследовании факторы.
Рисунок 22. Внутригрупповая дисперсия
Другой случай представлен на рисунке 23.
В этом случае средние значения имеют больший разброс, чем данные внутри каждой группы. Показатели веса в различных группах расположились обособленно - можно сделать предположение, что рацион питания влияет на вес животных больше, чем неучтенные факторы.
Рисунок 23. Межгрупповая дисперсия
Таким образом, чтобы оценить влияние многоуровневого фактора на какую-то величину, необходимо сопоставить межгрупповую и внутригрупповую дисперсии. Межгрупповая дисперсия вносится изучаемым фактором, внутригрупповая дисперсия вносится какими-то другими (неучтенными) факторами.
Если то фактор не влияет
Если то фактор влияет
Если то неопределенность
Мы бы воспользовались этим правилом, если бы нам была доступна генеральная совокупность, но выборочные данные, в том числе выборочные дисперсии, ошибочны и в этом случае необходимо прибегнуть к теории проверки статистических гипотез.
Выдвигаем Н(0) – фактор не влияет на изучаемый признак
Задаемся уровнем значимости α
Вычисляем выборочную в нутригрупповую дисперсию, как среднее значение дисперсий по группам
(43)
Где - дисперсия показателя в каждой из k групп
И выборочную межгрупповую дисперсию как отклонение средних в каждой группе от общей средней
(44)
ni –количество объектов в i –той группе
- общая средняя
Вычисляем критерий Фишера
(45)
Сравниваем с (Приложение 7) для заданного α и числа степеней свободы
(46)
где k – число групп, n -общее количество объектов обследования
Если вычисленное значение критерия Фишера меньше критического, то Н(0) принимается и делается вывод, что фактор не влияет на исследуемый показатель.
В противном случае принимается Н(1).
Вернемся к задаче влияния тяжести состояния пациентов при поступлении на срок госпитализации (по данным из таблицы 48).
Выдвинем гипотезы:
Н(0): срок лечения в стационаре не зависит от тяжести состояния пациента при госпитализации.
Н(1): срок лечения в стационаре зависит от тяжести состояния пациента при госпитализации
Таблица 48. Данные по сроку лечения
Таблица 49. Результаты статобработки
Т.к. Fвыч> Fкрит принимаем Н(1). |