По найденным значениям строим эпюру изгибающих моментов М (рис. в). Строим эпюру на растянутом волокне и знаки на эпюре не ставятся.
4. По эпюре изгибающих моментов определяем положение опасного сечения балки (сечения, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение ….., где М………= М max = …..
Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления:
В соответствии с ГОСТ 8239-89 (приложение 1), принимаем сечение из стального двутавра № ……. с W =…….
Поверяем:
Прочность обеспечена.
5.Проверяем прочность балки по касательным напряжениям. Касательное напряжение вычисляем по формуле Д.И.Журавского
где Q =……. - максимальное значение Q на эпюре;
Sx=……. см3= мм3;
𝐽x= ……. см4= мм4;
b=d=…. мм.
Прочность обеспечена.
Ответ: сечение балки двутавр №…….
ВАРИАНТ №16
Построить эпюры поперечных сил (Q) и изгибающих моментов (М), подобрать сечение стального двутавра и определить в подобранном сечении максимальное касательное напряжение. Принять [ σ ] = 160 МПа.
Дано:
F = 60 кН; q = 50кН/м; m = 10 кН м; a =2,0 м; b = 4,0 м; c =1,0 м; d = 1,0 м.
F q
m
a b c d
Определить: Q, M.
Решение.
1. Отбросив опоры, заменим их действие на балку соответствующими реакциями VA, VB. Составляем уравнения равновесия параллельной системы сил, из которых определяем опорные реакции балки:
………… (1)
……….. (2)
Из уравнения (1) находим VB:
…..
Из уравнения (2) находим VA:
…..
Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось Y:
…..
т.е. реакции определены верно.
2. Строим расчетную схему и обозначаем на ней характерные точки, по которым будем строить эпюры поперечных сил и изгибающих моментов (рис. а). Под расчетной схемой оставляем место для построения эпюр.
VA F q VB
m
рис.а А 1 2 3 4 5 В 6
2 4 1 1
рис.б Эпюра Q
(кН)
рис.в Эпюра М
(МПа)
Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначены А,1, 5,В,6 (рис. а).
По найденным значениям строим эпюру поперечных сил Q (рис. б).
Для построения эпюры на участке b достаточно было определить поперечную силу в точках 1 и В, так как эпюра на этом участке описывается прямой линией.
Так как эпюра пересекает нулевую линию в т.С, необходимо определить абсциссу сечения (расстояние zo). Для этого ординату в начале распределенной нагрузки (Q1) делим на интенсивность распределенной нагрузки:
3. Определяем значения изгибающих моментов М в характерных сечениях балки:
По найденным значениям строим эпюру изгибающих моментов М (рис. в). Строим эпюру на растянутом волокне и знаки на эпюре не ставятся.
4. По эпюре изгибающих моментов определяем положение опасного сечения балки (сечения, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение ….., где М…….= М max = …..
Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления:
В соответствии с ГОСТ 8239-89 (приложение 1), принимаем сечение из стального двутавра №…….с W = ………..
Поверяем:
Прочность обеспечена.
5.Проверяем прочность балки по касательным напряжениям. Касательное напряжение вычисляем по формуле Д.И.Журавского
где Q =………… - максимальное значение Q на эпюре;
Sx=………. см3= мм3;
𝐽x= ………..см4= мм4;
b=d=……. мм.
Прочность обеспечена.
Ответ: сечение балки двутавр № …………..
ВАРИАНТ №17
Построить эпюры поперечных сил (Q) и изгибающих моментов (М), подобрать сечение стального двутавра и определить в подобранном сечении максимальное касательное напряжение. Принять [ σ ] = 160 МПа.
Дано:
F = 40 кН; q = 20кН/м; m = 20 кН м; a =1,0 м; b = 4,0 м; c =4,0 м; d = 1,0 м.
F q
m
a b c d
Определить: Q, M.
Решение.
1. Отбросив опоры, заменим их действие на балку соответствующими реакциями VA, VB. Составляем уравнения равновесия параллельной системы сил, из которых определяем опорные реакции балки:
………….. (1)
…………. (2)
Из уравнения (1) находим VB:
….
Из уравнения (2) находим VA:
….
Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось Y:
….
т.е. реакции определены верно.
2. Строим расчетную схему и обозначаем на ней характерные точки, по которым будем строить эпюры поперечных сил и изгибающих моментов (рис. а). Под расчетной схемой оставляем место для построения эпюр.
VA F q VB
m
рис.а А 1 2 3 4 5 В 6
1 4 4 1
рис.б Эпюра Q
(кН)
рис.в Эпюра М
(МПа)
Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначены А,1, 5, В, 6 (рис. а).
По найденным значениям строим эпюру поперечных сил Q (рис. б).
Для построения эпюры на участке b достаточно было определить поперечную силу в точках 1 и 4, так как эпюра на этом участке описывается прямой линией.
Так как эпюра пересекает нулевую линию в т.С, необходимо определить абсциссу сечения (расстояние zo). Для этого ординату в начале распределенной нагрузки (Q1) делим на интенсивность распределенной нагрузки:
3. Определяем значения изгибающих моментов М в характерных сечениях балки:
По найденным значениям строим эпюру изгибающих моментов М (рис. в). Строим эпюру на растянутом волокне и знаки на эпюре не ставятся.
4. По эпюре изгибающих моментов определяем положение опасного сечения балки (сечения, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение ….., где М…..= М max = ……
Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления:
В соответствии с ГОСТ 8239-89 (приложение 1), принимаем сечение из стального двутавра №…….с W =……….
Поверяем:
Прочность обеспечена.
5.Проверяем прочность балки по касательным напряжениям. Касательное напряжение вычисляем по формуле Д.И.Журавского
где Q = ………… - максимальное значение Q на эпюре;
Sx= ……….. см3= мм3;
𝐽x=………. см4= мм4;
b=d=…….. мм.
Прочность обеспечена.
Ответ: сечение балки двутавр №…….
ВАРИАНТ №18
Построить эпюры поперечных сил (Q) и изгибающих моментов (М), подобрать сечение стального двутавра и определить в подобранном сечении максимальное касательное напряжение. Принять [ σ ] = 160 МПа.
Дано:
F = 20 кН; q = 10кН/м; m = 30 кН м; a = 2,0 м; b = 3,0 м; c = 4,0 м; d = 2,0 м.
F q
m
a b c d
Определить: Q, M.
Решение.
1. Отбросив опоры, заменим их действие на балку соответствующими реакциями VA, VB. Составляем уравнения равновесия параллельной системы сил, из которых определяем опорные реакции балки:
……….. (1)
………. (2)
Из уравнения (1) находим VB:
….
Из уравнения (2) находим VA:
….
Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось Y:
….
т.е. реакции определены верно.
2. Строим расчетную схему и обозначаем на ней характерные точки, по которым будем строить эпюры поперечных сил и изгибающих моментов (рис. а). Под расчетной схемой оставляем место для построения эпюр.
VA F q VB
m
рис.а A 1 2 3 4 5 B 6
2 3 4 2
рис.б Эпюра Q
(кН)
рис.в Эпюра М
(МПа)
Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначены А,1, 5,В,6 (рис. а).
По найденным значениям строим эпюру поперечных сил Q (рис. б).
Для построения эпюры на участке b достаточно было определить поперечную силу в точках 1 и 5, так как эпюра на этом участке описывается прямой линией.
Так как эпюра пересекает нулевую линию в т.С, необходимо определить абсциссу сечения (расстояние zo). Для этого ординату в начале распределенной нагрузки (Q1) делим на интенсивность распределенной нагрузки:
3. Определяем значения изгибающих моментов М в характерных сечениях балки:
По найденным значениям строим эпюру изгибающих моментов М (рис. в). Строим эпюру на растянутом волокне и знаки на эпюре не ставятся.
4. По эпюре изгибающих моментов определяем положение опасного сечения балки (сечения, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение ……, где М……= М max = …..
Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления:
В соответствии с ГОСТ 8239-89 (приложение 1), принимаем сечение из стального двутавра №……. с W = ………
Поверяем:
Прочность обеспечена.
5.Проверяем прочность балки по касательным напряжениям. Касательное напряжение вычисляем по формуле Д.И.Журавского
где Q = ……….. - максимальное значение Q на эпюре;
Sx=………. см3= мм3;
𝐽x=…………см4= мм4;
b=d=……. мм.
Прочность обеспечена.
Ответ: сечение балки двутавр №………...
ВАРИАНТ № 19
Построить эпюры поперечных сил (Q) и изгибающих моментов (М), подобрать сечение стального двутавра и определить в подобранном сечении максимальное касательное напряжение. Принять [ σ ] = 160 МПа.
Дано:
F = 30 кН; q = 10кН/м; m = 20 кН м; a =2,0 м; b = 4,0 м; c =2,0 м; d = 1,0 м.
F q
m
a b c d
Определить: Q, M.
Решение.
1. Отбросив опоры, заменим их действие на балку соответствующими реакциями VA, VB. Составляем уравнения равновесия параллельной системы сил, из которых определяем опорные реакции балки:
…………… (1)
………….. (2)
Из уравнения (1) находим VB:
….
Из уравнения (2) находим VA:
….
Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось Y:
….
т.е. реакции определены верно.
2. Строим расчетную схему и обозначаем на ней характерные точки, по которым будем строить эпюры поперечных сил и изгибающих моментов (рис. а). Под расчетной схемой оставляем место для построения эпюр.
VA F q VB
рис.а А 1 2 3 В 4 m
2 4 2 1
рис.б Эпюра Q
(кН)
рис.в Эпюра М
(МПа)
Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначены А,1, 3,В,4 (рис. а).
По найденным значениям строим эпюру поперечных сил Q (рис. б).
Так как эпюра пересекает нулевую линию в т.С, необходимо определить абсциссу сечения (расстояние zo). Для этого ординату в начале распределенной нагрузки (Q1) делим на интенсивность распределенной нагрузки:
3. Определяем значения изгибающих моментов М в характерных сечениях балки:
По найденным значениям строим эпюру изгибающих моментов М (рис. в). Строим эпюру на растянутом волокне и знаки на эпюре не ставятся.
4. По эпюре изгибающих моментов определяем положение опасного сечения балки (сечения, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение ……., где М……..= М max = …..
Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления:
В соответствии с ГОСТ 8239-89 (приложение 1), принимаем сечение из стального двутавра №………с W =…………
Поверяем:
Прочность обеспечена.
5.Проверяем прочность балки по касательным напряжениям. Касательное напряжение вычисляем по формуле Д.И.Журавского
где Q =……… - максимальное значение Q на эпюре;
Sx= ………. см3= мм3;
𝐽x=……….. см4= мм4;
b=d= ……. мм.
Прочность обеспечена.
Ответ: сечение балки двутавр №…….
ВАРИАНТ № 20
Построить эпюры поперечных сил (Q) и изгибающих моментов (М), подобрать сечение стального двутавра и определить в подобранном сечении максимальное касательное напряжение. Принять [ σ ] = 160 МПа.
Дано:
F = 40 кН; q = 30кН/м; m = 10 кН м; a = 1,0 м; b = 5,0 м; c = 1,0 м; d = 1,0 м.
F q
m
a b c d
Определить: Q, M.
Решение.
1. Отбросив опоры, заменим их действие на балку соответствующими реакциями VA, VB. Составляем уравнения равновесия параллельной системы сил, из которых определяем опорные реакции балки:
………… (1)
…………. (2)
Из уравнения (1) находим VB:
….
Из уравнения (2) находим VA:
….
Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось Y:
….
т.е. реакции определены верно.
2. Строим расчетную схему и обозначаем на ней характерные точки, по которым будем строить эпюры поперечных сил и изгибающих моментов (рис. а). Под расчетной схемой оставляем место для построения эпюр.
VA F q VB
рис.а А 1 2 3 В 4 m
1 5 1 1
рис.б Эпюра Q
(кН)
рис.в Эпюра М
(МПа)
Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначены А,1, 3, В,4 (рис. а).
=
По найденным значениям строим эпюру поперечных сил Q (рис. б).
Так как эпюра пересекает нулевую линию в т.С, необходимо определить абсциссу сечения (расстояние zo). Для этого ординату в начале распределенной нагрузки (Q1) делим на интенсивность распределенной нагрузки:
3. Определяем значения изгибающих моментов М в характерных сечениях балки:
По найденным значениям строим эпюру изгибающих моментов М (рис. в). Строим эпюру на растянутом волокне и знаки на эпюре не ставятся.
4. По эпюре изгибающих моментов определяем положение опасного сечения балки (сечения, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение ……., где М……= М max = ….
Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления:
В соответствии с ГОСТ 8239-89 (приложение 1), принимаем сечение из стального двутавра №…….. с W = ……….
Поверяем:
Прочность обеспечена.
5.Проверяем прочность балки по касательным напряжениям. Касательное напряжение вычисляем по формуле Д.И.Журавского