Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Неопределённые системы ( ).




Задача 1. Решить неоднородную систему

Решение. Построим расширенную матрицу и преобразуем её.

=

Это равносильно такой системе уравнений

Базисный минор в первых двух столбцах, 3-й столбец соответствует свободной переменной , её надо перенести вправо.

теперь надо выразить через .

фактически и так уже почти выражено, во 2-м уравнении.

. Подставим теперь эту информацию в 1-е уравнение.

, откуда .

Вот эти два выражения ,

как раз и составляют общее решение системы. Задавая любое значение , можно вычислить , и получится конкретная тройка чисел, то есть частное решение.

Общее решение можно записать также в виде такого вектора: .

Частные решения, например:

частное решение .

частное решение .

Ответ. Общее решение .

Задача 2. Решить неоднородную систему

Решение. Запишем расширенную матрицу системы, впрочем, сразу при этом удобно будет поменять местами 1-ю и 3-ю строки, чтобы угловой элемент содержал именно число 1.

обнулим всё ниже углового элемента, для этого:

из 2-й строки вычтем 1-ю, из 3-й удвоенную 1-ю, из 4-й 1-ю, домноженную на 4.

теперь можно поменять местами 2 и 3 строки, а также домножить на три последних уравнения (там почти везде были знаки минус)

затем из 4-й строки вычитаем 2-ю, чтобы продолжить стандартную процедуру метода Гаусса, потом видим что 3-я и 4-я стали одинаковы, тогда из 4-й вычитаем 3-ю. Получается, что 4-е уравнение 0 = 0.

Итак, осталось 3 уравнения, базисный минор легко заметить в первых трёх столбцах (там треугольная структура матрицы, и этот определитель явно отличен от 0). 4-й столбец не входит в базисный минор, то есть 4-я переменная свободная, т.е. когда будем записывать систему, переносим её через знак равенства во всех уравнениях.

Из последнего уравнения , подставляя это выражение во 2-е уравнение, выразим . = ,

. Далее из 1-го уравнения:

= ,

. Итак, общее решение:

, , .

Можно записать в виде вектора: .

Если задать, например, получим частное решение: .

Ответ. Общее решение: .

 

Задача 3. Решить неоднородную систему

Решение. Запишем расширенную матрицу, вычтем из 2-й строки 1-ю.

Здесь всего две строки, так что метод Гаусса проводится достаточно коротко.

Видим, что базисный минор можно выбрать в первых двух столбцах. Получается, что 3-я переменная свободная. Перепишем снова в виде системы, а не матрицы.

переносим вправо:

Выражаем , а затем поднимаемся в 1-е уравнение и ,через константы и . Впрочем, фактически и так уже выражено:

. Подставим это выражение в 1-е уравнение

, тогда

общее решение симстемы:

Также записывается в виде вектора: .

Задавая какое-либо значение , всякий раз можем вычислить остальные переменные, и получить тройку чисел. Частные решения: (1,1,0) или (2,-1,1) или (3,-3,2)... их бесконечно много.

Ответ. Общее решение .

 

Однородные системы.

Задача 4. Решить однородную систему:

Решение.

Видим, что отличие от предыдущей задачи в том, что справа нулевые константы. Если преобразовывать расширенную матрицу, то получим:

Видим, что справа всё равно как был, так и остаётся столбец из нулей, так что в будущем для однородных систем можно использовать только основную матрицу, ведь расширенная не несёт никакой новой информации, всё равно там справа нулевой столбец, и он не меняется при преобразованиях строк.

Итак, получили систему базисный минор можно заметить в первых двух столбцах, так что свободная переменная, переносим её вправо: . Теперь последовательно выражаем через свободную переменную две базисные переменные.

Из 2-го: , а подставляя в 1-е, получим

, т.е. .

Общее решение системы: .

Также записывается в виде вектора: .

Отличие от прошлой задачи в том, что на всех местах, где там были константы, здесь 0. Все переменные преобразовывались точно так же.

Частные решения здесь отличаются тем, что задавая в k раз больше, мы и все остальные получим тоже в k раз больше:

, , , и так далее.

То есть все тройки чисел будут пропорциональны какой-то одной.

Если для неоднородной системы представить эти тройки чисел как точки в пространстве, то там они образовывали прямую,не проходящую через начало координат, а для однородной системы - проходящую через начало координат. Поэтому разумно выбрать для этой прямой всего 1 вектор, который задаёт её. Это как раз и есть ФСР (фундаментальная система решений). ФСР .

Ответ. Общее решение , ФСР .

Задача 5. Решить однородную систему .

Решение. Можно записать основную матрицу и там вычесть 1-ю строку из 2-й, впрочем, можно для небольшой системы сделать это и сразу в системе, вычесть 1-е уравнение из 2-го. Получится:

Ранг равен 2, а неизвестных 3, 3-я неизвестная свободная, переносим вправо. Тогда:

Из 2-го уравнения , тогда , а значит .

Общее решение: , . В виде вектора: .

Присвоим , получим остальные неизвестные.

ФСР состоит всего из одного вектора: . Все остальные решения пропорциональны этому.

Если бы, например, присвоили , получили бы . Это потому, что всего одна свободная переменная.

Ответ. Общее решение: , ФСР .

Задача 6. Решить однородную систему

Решение. Запишем основную матрицу, преобразуем её.

снова представим в виде системы:

базисный минор порядка 2, можно обвести в левом углу, поэтому 3-я и 4-я переменная - свободные. Здесь их уже две, так как , поэтому . Перенесём их через знак равенства.

здесь уже выражено: , подставим это в первое уравнение, чтобы выразить и .

, .

Общее решение: , .

В виде вектора: .

Если поочерёдно присвоить значение 1 каждой из свободных переменных (а другая в это время 0) то получим гарантированно 2 линейно-независимых вектора, они не пропорциональны, так как число 1 в них на разных местах.

, получим

, получим .

Эти 2 вектора { , } и есть ФСР. Это частных решений, из которых можно составить любые другие частные решения. Любые их линейные комбинации будут частными решениями однородной системы.

Ответ. Общее решение: .

ФСР это множество из 2 векторов: { , }.

Задача 7. Решить однородную систему, найти ФСР.

Решение. Запишем основную матрицу системы и преобразуем её методом Гаусса.

Ранг матрицы равен 2, базисные столбцы 1-й и 2-й. Несмотря на то, что сначала могло показаться, что здесь будет одна свободная переменная (4 переменных и 3 уравнения), на самом деле здесь будет две свободных переменных, ведь 3-е уравнение оказалось линейной комбинацией первых двух. .

Снова возвращаемся от матрицы к системе уравнений.

перенесём свободные неизвестные вправо:

из 2 уравнения , подставим это в 1-е,

будет , то есть .

Общее решение: , .

В виде вектора:

Построим ФСР из 2 векторов.

, получим

, получим .

Так как здесь есть дроби, то для того, чтобы векторы в ФСР содержали только целые координаты, можно задавать не только 1, но и другое число, главное только чтобы в 3 и 4 координатах помещался невырожденный минор. Если мы задаём поочерёдно каждой свободной переменной какое-то число (не обязательно 1) а остальным 0, то линейная независимость этой системы векторов всё равно заведомо обеспечена.

Ответ. Общее решение: , .

ФСР из 2 векторов: .

Задача 8. Решить однородную систему, найти ФСР.

Решение. Преобразуем методом Гаусса основную матрицу системы.

Треугольная структура продолжилась до самой последней строки, и не проявилась строка из нулей, то есть ранг равен 3. Здесь всего одна свободная переменная. Развернём обратно эту матрицу, т.е. запишем в виде системы, а затем перенесём свободные переменные вправо.

Из последнего, , это подставим во 2-е и получим .

Затем это всё в 1-е уравнение, получим .

ФСР: один вектор .

Ответ. Общее решение: . ФСР:

 

Задача 9. Решить однородную систему, найти ФСР.

Решение. Преобразуем методом Гаусса основную матрицу системы.

Здесь ранг 2, неизвестных 5, .

Переписывая в виде системы, переносим вправо 3 свободных переменных.

Выражаем из 2-го как линейную функцию от , а затем с помощью 1-го уравнения, также и .

 

 

, .

Общее решение: .

ФСР из 3 векторов. Для этого задаём поочерёдно 1 какой-либо из свободных переменных, а 0 остальным.

ФСР: , , .

Ответ. Общее решение: .

ФСР: , , .

Домашнее задание.

Решить однородную систему, найти ФСР:

 

 

Практика № 9 (7 октября в обеих группах)

Практика № 10

Приложение 1.

Пример одного варианта контрольных работ.

Темы 1-й контрольной:

1. Действия над матрицами.

2. Определители.

3. Обратная матрица.

4. Ранг матрицы.

 

Вариант:

1) Умножить матрицы

2) Найти определитель

3) Найти обр.матрицу

4) Найти ранг матрицы

 

Темы 2-й контрольной:

5. Векторная алгебра (скалярные, векторные произведения).

6. Системы уравнений, метод Гаусса

7. Собственные числа и векторы

8. Уравнения прямой и плоскости

 

Вариант:

5) Векторы выражены через : , .

, , угол между ними 60 градусов. Найти .

 

6) Решить систему

7) Найти собственные числа и собственные векторы линейного оператора, заданного матрицей .

8) Найти уравнение плоскости, проходящей через точку (1,4,2) перпендикулярно вектору (2,1,2).

Темы 3-й контрольной:

9. Предел последовательности

10. Предел функции, с неопределённостью 0/0.

11. Предел функции, 1-й замеч. lim

12. Предел функции, 2-й замеч. lim

Вариант:

9) Вычислить предел

10) Вычислить предел

11) Вычислить предел

12) Вычислить предел

 

Темы 4-й контрольной:

13. Производные функции одной переменной.

14. Частные производные для f(x,y), градиент.

15. Уравнение касательной

15. Экстремумы функции на [a,b].

Вариант:

13) Найти производную (какая-нибудь функция f(x)).

14) Найти градиент функции в точке и производную по направлению .

 

15) Найти уравнение касательной для в точке и высоту касательной при x=0.

 

16) Найти экстремумы для .

 

Литература.

[1]. Магазинников Л.И. Практикум по линейной алгебре и аналитической геометрии.

[2]. Демидович Б.П. Сборник задач и упражнений по математическому анализу.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 507 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.