Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Быстрая сортировка - упорядочение за среднее время О(n log n).




Быстрая сортировка использует стратегию «разделяй и властвуй». Шаги алгоритма таковы (Алгоритм, приведённый ниже, неверен: если в массиве оказалось два элемента, равных опорному и индексы l и r достигли их одновременно, то шаг 2.6 не изменяет массива при обмене этих элементов и алгоритм оказывается в вечном цикле. В англоязычной версии статьи приведён правильно действующий псевдо-код):

Выбираем в массиве некоторый элемент, который будем называть опорным элементом. С точки зрения корректности алгоритма выбор опорного элемента безразличен. С точки зрения повышения эффективности алгоритма выбираться должна медиана, но без дополнительных сведений о сортируемых данных её обычно невозможно получить. Известные стратегии: выбирать постоянно один и тот же элемент, например, средний или последний по положению; выбирать элемент со случайно выбранным индексом.

Операция разделения массива: реорганизуем массив таким образом, чтобы все элементы со значением меньшим или равным опорному элементу, оказались слева от него, а все элементы, превышающие по значению опорный — справа от него. Обычный алгоритм операции:

Два индекса — l и r, приравниваются к минимальному и максимальному индексу разделяемого массива, соответственно.

Вычисляется индекс опорного элемента m.

Индекс l последовательно увеличивается до тех пор, пока l-й элемент не окажется больше либо равен опорному.

Индекс r последовательно уменьшается до тех пор, пока r-й элемент не окажется меньше либо равен опорному.

Если r = l — найдена середина массива — операция разделения закончена, оба индекса указывают на опорный элемент.

Если l < r — найденную пару элементов нужно обменять местами и продолжить операцию разделения с тех значений l и r, которые были достигнуты. Следует учесть, что если какая-либо граница (l или r) дошла до опорного элемента, то при обмене значение m изменяется на r-й или l-й элемент соответственно, изменяется именно индекс опорного элемента и алгоритм продолжает свое выполнение.

Рекурсивно упорядочиваем подмассивы, лежащие слева и справа от опорного элемента.

Базой рекурсии являются наборы, состоящие из одного или двух элементов. Первый возвращается в исходном виде, во втором, при необходимости, сортировка сводится к перестановке двух элементов. Все такие отрезки уже упорядочены в процессе разделения.

Поскольку в каждой итерации (на каждом следующем уровне рекурсии) длина обрабатываемого отрезка массива уменьшается, по меньшей мере, на единицу, терминальная ветвь рекурсии будет достигнута обязательно и обработка гарантированно завершится.

public static void qSort(int [] A, int low, int high) {

int i = low;

int j = high;

int x = A[(low+high)/2]; // x - опорный элемент посредине между low и high

do {

while (A[i] < x) ++i; // поиск элемента для переноса в старшую часть

while (A[j] > x) --j; // поиск элемента для переноса в младшую часть

if (i <= j){

// обмен элементов местами:

int temp = A[i];

A[i] = A[j];

A[j] = temp;

// переход к следующим элементам:

i++; j--;

}

} while (i < j);

if (low < j) qSort(A, low, j);

if (i < high) qSort(A, i, high);

}

Лучший случай. Для этого алгоритма самый лучший случай — если в каждой итерации каждый из подмассивов делился бы на два равных по величине массива. В результате количество сравнений, делаемых быстрой сортировкой, было бы равно значению рекурсивного выражения CN = 2CN/2+N, что в явном выражении дает примерно N lg N сравнений. Это дало бы наименьшее время сортировки.

Среднее. Даёт в среднем O(n log n) обменов при упорядочении n элементов. В реальности именно такая ситуация обычно имеет место при случайном порядке элементов и выборе опорного элемента из середины массива либо случайно.
На практике (в случае, когда обмены являются более затратной операцией, чем сравнения) быстрая сортировка значительно быстрее, чем другие алгоритмы с оценкой O(n lg n), по причине того, что внутренний цикл алгоритма может быть эффективно реализован почти на любой архитектуре. 2CN/2 покрывает расходы по сортировке двух полученных подмассивов; N — это стоимость обработки каждого элемента, используя один или другой указатель. Известно также, что примерное значение этого выражения равно CN = N lg N.

Худший случай. Худшим случаем, очевидно, будет такой, при котором на каждом этапе массив будет разделяться на вырожденный подмассив из одного опорного элемента и на подмассив из всех остальных элементов. Такое может произойти, если в качестве опорного на каждом этапе будет выбран элемент либо наименьший, либо наибольший из всех обрабатываемых.
Худший случай даёт O(n ²) обменов. Но количество обменов и, соответственно, время работы — это не самый большой его недостаток. Хуже то, что в таком случае глубина рекурсии при выполнении алгоритма достигнет n, что будет означать n-кратное сохранение адреса возврата и локальных переменных процедуры разделения массивов. Для больших значений n худший случай может привести к исчерпанию памяти во время работы алгоритма. Впрочем, на большинстве реальных данных можно найти решения, которые минимизируют вероятность того, что понадобится квадратичное время.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 833 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2221 - | 2091 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.