Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие и классификация моделей




Модель - это такой материальный или мысленно представляе­мый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

По своей природе модели делятся на физические, символиче­ские и смешанные.

Физические модели воплощены в каких-либо материальных объ­ектах, имеющих естественное или искусственное происхождение, и подразделяются на модели подобия и аналоговые. Первые ха­рактеризуются масштабными изменениями, выбираемыми в соответст­вии с критериями подобия, вторые - основаны на известных аналогиях между протеканием процессов в различных системах. Примером анало­говой модели является экономический эксперимент, когда результаты экспериментирования на одном или нескольких предприятиях перено­сятся на совокупность объектов близкой экономической природы.

Символические модели характеризуются тем, что параметры ре­ального объекта и отношения между ними представлены символами: семантическими, математическими, логическими. Наряду со словесными описа­ниями функционирования объектов - сценариями - сюда также отно­сятся схематические модели: графики и блок-схемы, логические блок-схемы и таблицы решений, номо­граммы, а также математические описания - математические модели.

Смешанные модели применяются тогда, когда часть элементов и процессов не удается описать символами, и они моделируются физи­чески. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счет обмена инфор­мацией с ней.

По целевому назначению различают модели структуры, функ­ционирования и стоимостные.

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

- канонические модели, характеризующие взаимодействие объ­екта с окружением через входы и выходы:

- модели внутренней структуры, характеризующие состав компо­нентов объекта и связи между ними;

- модели иерархической структуры (дерево системы), в которых объект расчленяется на элементы более низкого уровня, действия ко­торых подчинены интересам целого.

Модели структуры обычно представлены в виде блок-схем, реже графов и матриц связей.

Модели функционирования включают широкий спектр симво­лических моделей:

- модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до пре­кращения функционирования;

- модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирова­ния отдельных элементов объекта при реализации тех или иных функ­ций объектов;

- информационные модели, отображающие во взаимосвязи ис­точники и потребителей информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

- процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных опера­ций, в частности, реализации процедур принятия управленческих ре­шений;

- временные модели, описывающие процедуру функционирова­ния объектов во времени и распределение ресурса "время" по отдель­ным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны. Их со­вместное использование позволяет проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономиче­ским критериям.

В зависимости от степени формализации связей между фак­торами различают аналитические и алгоритмические модели.

Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.

Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. Они приме­няются, когда модель сложной системы гораздо легче построить в ви­де алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логиче­ских условий - разветвлений хода течения процесса.

В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.

В детерминированных моделях ни целевая функция, ни уравне­ния связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.

Для стохастических моделей характерно наличие факторов, ко­торые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные. Значения выходных характеристик в таких моделях могут быть пред­сказаны только в вероятностном смысле. Реализация таких моделей в большинстве случаев осуществляется методами имитационного мо­делирования.

В зависимости от фактора времени различают динамические и статические модели.

Модели, в которых входные факторы, а, следовательно, и ре­зультаты моделирования явно зависят от времени, называются дина­мическими, а модели, в которых зависимость от времени либо отсут­ствует совсем, либо проявляется слабо или неясно, называются ста­тическими.

Структура процесса моделирования и содержание его этапов.

Моделирование систем - это метод, с помощью которого, варь­ируя в эксперименте потоки материалов или предметов через опера­ции или процессы, можно определить влияние изменений различных переменных в системе. Моделирование представляет собой средство опытной проверки идей и представлений в условиях, которые невоз­можно было бы создать для реального эксперимента, учитывая свя­занные с этим затраты, время и риск. Процесс моделирования обязательно включает и построение аб­стракций и умозаключения по аналогии и конструирование новых сис­тем. Основная особенность моделирования в том, что это метод опо­средованного познания с помощью объектов заменителей. Модель выступает как своеобразный инструмент познания, который исследо­ватель ставит между собой и объектом и с помощью которого изучает интересующий его объект.

Процесс моделирования включает три элемента: субъект (ис­следователь); объект исследования; модель, опосредующая отноше­ние познающего субъекта и познаваемого объекта.

Первый этап моделирования - построение модели. Он пред­полагает наличие некоторых знаний об объекте - оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства ори­гинала и модели. Любая модель замещает оригинал лишь в строго ог­раниченном смысле, и изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Из этого следует, что для одного объекта может быть построено несколько специализированных моделей, концентрирующих внимание на опре­деленных сторонах исследуемого объекта ила же характеризующих объект с разной степенью детализации.

Второй этап моделирования - изучение модели. Здесь мо­дель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели.

Третий этап моделирования - перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Зна­ния о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые не нашли отражения или были измене­ны при построении модели.

Четвертый этап моделирования -практическая проверка по­лученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта.

Моделирование представляет собой циклический процесс. Это оз­начает, что за первым четырехэтапным циклом может последовать вто­рой, третий и т.д. При этом знания об исследуемом объекте расширяют­ся, а исходная модель постепенно совершенствуются. Недостатки, об­наруженные после первого цикла моделирования, обусловленные ма­лым знанием объекта и ошибками в построении модели, можно испра­вить в последующих циклах. Таким образом, в методологии моделиро­вания заложены большие возможности саморазвития.

37. Имитационное моделирование социально-экономических систем.

Идея метода имитационного моделирования состоит в том, что вместо аналитического описания взаимосвязей между входами, со­стояниями и выходами строят алгоритм, отображающий последова­тельность развития процессов внутри исследуемого объекта, а затем "проигрывают" поведение объекта на ЭВМ. Следует отметить, что по­скольку для имитационного моделирования зачастую требуются большие выборки статистических данных, поэтому издержки, связан­ные с имитацией, почти всегда высоки по сравнению с расходами, не­обходимыми для решения задач на небольшой аналитической модели. Нужно сопоставлять затраты с ценностью информации, которую ожи­дают получить.

Имитационная модель - вычислительная процедура, формали­зовано описывающая изучаемый объект и имитирующая его поведе­ние. При ее составлении нет необходимости упрощать описание явле­ния, отбрасывая даже существенные детали, чтобы втиснуть его в рамки модели, удобной для применения тех или иных известных ма­тематических методов анализа. По своей форме имитационная мо­дель является логико-математической (алгоритмической), выраженной на языках математики и логики.

Имитационные модели, являющиеся особым классом математи­ческих моделей, принципиально отличаются от аналитических тем, что использование ЭВМ в процессе их реализации играет определяющую роль. Имитационные модели не накладывают жестких ограничений на используемые исходные данные, позволяют в процессе исследования использовать всю собранную информацию вне зависимости от ее формы представления и степени формализации.

Различают два вида имитационных моде­лей:

- детерминированные - модели с фиксированными входными параметрами и параметрами модели;

- статистические, в которых входные параметры и параметры модели имеют случайные значения.

Для имитационного моделирования характерна имитация эле­ментарных явлений, составляющих исследуемый процесс с сохране­нием их логической структуры, последовательности протекания во времени, характера и состава информации о состоянии процесса.

Методы имитационного моделирования позволяют сочетать формально математические методы исследования с интуицией и опы­том специалистов. Для того чтобы такое сочетание осуществить наи­более эффективно, необходимо максимально сократить по времени, облегчить и упростить общение специалистов с машиной. Нужно, что­бы указанные специалисты могли при формировании модели и вос­произведении процесса на ЭВМ оперировать привычными понятиями и представлениями, а также получали бы информацию в удобной для восприятия и анализа форме. В связи с этим появилась настоятельная необходимость в разработке программных средств, специально при­способленных к задаче написания программ моделирования.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 2517 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2507 - | 2380 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.