Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интерференция в плоскопараллельной пластине




Общие методические указания

 

При решении и оформлении задач необходимо соблюдать следующие требования:

1. Записать краткое условие задачи, выразить все известные величины в одной и той же системе единиц (как правило, в СИ). При необходимости ввести дополнительные постоянные физические величины.

2. Решение задач следует сопровождать краткими, но исчерпывающими объяснениями. При необходимости дать чертеж или график.

3. Решать задачу надо в общем виде, т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условии задачи. Произвести вычисления по расчетной формуле с соблюдением правил приближенных вычислений.

Результаты контроля аудиторной и самостоятельной работы студентов на практических занятиях учитываются лектором при приеме экзаменов и дифференцированных зачетов.

 

 

ИНТЕРФЕРЕНЦИЯ СВЕТА

 

Основные формулы и законы

 

• Скорость света и длина волны в среде

где – скорость света в вакууме; абсолютный показатель преломления среды, который показывает, во сколько раз скорость света в среде меньше, чем в вакууме; – длина волны в вакууме.

• Оптическая длина пути световой волны

где – геометрическая длина пути световой волны в среде с показателем преломления .

• Оптическая разность хода двух световых волн

• Зависимость разности фаз от оптической разности хода световых волн:

где – длина световой волны.

• Условие интерференционных максимумов

• Условие интерференционных минимумов

· Координаты максимумов и минимумов интенсивности в опыте Юнга

; ,

где = 0, 1, 2… – номер интерференционной полосы; – расстояние между двумя когерентными источниками, находящимися на расстоянии от экрана .

• Ширина интерференционной полосы

· Оптическая разность хода при интерференции в тонких плёнках в проходящем свете:

или ,

в отражённом свете:

или ,

где – толщина пленки; – ее показательпреломления; – угол падения; – угол преломления.

• Радиусы светлых колец Ньютона в отраженном свете (или темных в проходящем свете)

где – номер кольца; – радиус кривизны линзы.

• Радиусы темных колец Ньютона в отраженном свете (или светлых в проходящем свете)

• В случае «просветления оптики» интерферирующие лучи в отраженном свете гасят друг друга при условии

где – показатель преломления стекла; – показатель преломления пленки.

 

Задания

Опыт Юнга

1.1. Расстояние от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной 1 см укладывается 10 темных интерференционных полос. Длина волны равна 0,7 мкм. [0,63 мм].

1.2. Две когерентные световые волны приходят в некоторую точку пространства с разностью хода 2,25 мкм. Каков результат интерференции в этой точке, если свет: а) красный (l= 750 нм), б) зеленый (l= 500 нм)? [а) усиление; б) ослабление].

1.3. Разность хода двух интерферирующих лучей монохро­мати­ческого света 0,3l. Определить разность фаз колебаний. [108°].

1.4. Расстояние между двумя щелями в опыте Юнга равно 1 мм, расстояние от щелей до экрана 3 м, расстояние между максимумами яркости смежных интерференционных полос на экране 1,5 мм. Определить длину волны источника монохроматического света. [500 нм].

1.5. В опыте Юнга расстояние между щелями равно 1 мм, а расстояние от щелей до экрана равно 3 м. Определить: 1) положение первой светлой полосы; 2) положение третьей темной полосы, если щели освещать монохроматическим светом с длиной волны 0,5 мкм. [1) ±1,5 мм; 2) ±5,25 мм].

1.6. Расстояние между двумя щелями в опыте Юнга равно 0,5 мм. Длина волны света равна 0,6 мкм. Определить расстояние от щелей до экрана, если ширина интерференционных полос равна 1,2 мм. [1 м].

1.7. Во сколько раз изменится ширина интерференционных полос на экране в опыте с зеркалами Френеля, если фиолетовый светофильтр (0,4 мкм) заменить красным (0,7 мкм). [1,75].

1.8. Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если зеленый светофильтр (l=0,5 мкм) заменить красным (l=0,65 мкм)? [В 1,3 раза].

1.9. В опыте Юнга отверстия освещались монохроматическим светом длиной волны 600 нм, расстояние между отверстиями 1 мм и расстояние от отверстий до экрана 3 м. Найти положение трех первых полос. [1,8 мм; 3,6 мм; 5,4 мм].

1.10. В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света равно 0,5 мм, расстояние от них до экрана равно 5 м. В желтом свете ширина интерференционных полос равна 6 мм. Определить длину волны света. [0,6мкм].

1.11. Если в опыте Юнга на пути одного из интерферирующих лучей поместить перпендикулярно этому лучу тонкую стеклянную пластинку (n=1,5), то центральная светлая полоса смещается в положение, первоначально занимаемое пятой светлой полосой. Длина волны света равна 0,5 мкм. Определить толщину пластины [5 мкм].

1.12. В опыте Юнга расстояние от щелей до экрана равно 3 м. Определить угловое расстояние между светлыми соседними полосами, если третья светлая полоса на экране отстоит от центра интерференционной картины на 4,5 мм. [5·10ˉ4 рад].

 

Интерференция в плоскопараллельной пластине

1.13. На мыльную пленку с показателем преломления n=1,33 падает по нормали монохроматический свет с длиной волны 0,6 мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова возможная наименьшая толщина пленки? [0,113 мкм].

1.14. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны 500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину пленки, если показатель преломления материала пленки равен 1,4. [89 нм].

1.15. На тонкую глицериновую пленку толщиной 1,5 мкм нормально к ее поверхности падает белый свет. Определить число длин волн лучей видимого участка спектра (0,4 ≤ λ ≤ 0,8 мкм), которые будут ослаблены в результате интерференции в проходящем свете. Показатель преломления глицерина равен 1,47. [5].

1.16. На стеклянную пластинку нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны 640 нм, падающим на пластинку нормально. Какую минимальную толщину должен иметь слой, чтобы отраженный пучок имел наименьшую яркость? [0,123 мкм].

1.17. Пучок параллельных лучей с длиной волны 0,6 мкм падает под углом 30˚ на мыльную пленку с показателем преломления n=1,33. При какой возможной наименьшей толщине пленки отраженные лучи будут максимально ослаблены интерференцией? [0,243 мкм].

1.18. Пучок параллельных лучей с длиной волны 0,6 мкм падает под углом 30˚ на мыльную пленку с показателем преломления n=1,33. При какой возможной наименьшей толщине пленки отраженные лучи будут максимально усилены интерференцией? [0,122 мкм].

1.19. Пучок белого света падает нормально на стеклянную пластинку, толщина которой равна 0,4 мкм. Показатель преломления стекла равен 1,5. Какие длины волн, лежащие в пределах видимого спектра (0,4 ≤ λ ≤ 0,7 мкм), усиливаются в отраженном пучке? [0,48 мкм].

1.20. На мыльную пленку с показателем преломления n=1,33 падает белый свет под углом 45˚. При какой наименьшей толщине пленки отраженные лучи будут окрашены в желтый цвет (λ=6.10-7м)? [0,13 мкм].

1.21. Темной или светлой будет в отраженном свете мыльная пленка толщиной d = 0,1λ? Пленка находится в воздухе, показатель преломления пленки равен 1,3. Считать, что пучок света падает на пленку нормально. [темной].

1.22. Зимой на стеклах трамваев и автобусов образуются тонкие пленки наледи, окрашивающие все видимое сквозь них в зеленоватый цвет. Оценить, какова наименьшая толщина этих пленок (показатель преломления наледи принять равным 1,33). [~0,5 мкм].

1.23. На поверхность стеклянного объектива (n1=1,5) нанесена тонкая пленка, показатель преломления которой n2=1,2 («просветляющая» пленка). При какой наименьшей толщине этой пленки произойдет максимальное ослабление отраженного света в средней части видимого спектра? [0,115 мкм].

1.24. На линзу с показателем преломления n = 1,58 нормально падает монохроматический свет с длиной волны 0,55мкм. Для устранения потерь света в результате отражения на линзу наносится тонкая пленка. Определить: 1) оптимальный показатель преломления для пленки; 2) толщину пленки. [1) 1,26; 2) 109 нм].

1.25. Тонкая пленка с показателем преломления n=1,5 освещается светом с длиной волны 600 нм. При какой минимальной толщине пленки исчезнут интерференционные полосы? [100 нм].

Интерференция в клине

1.26. На стеклянный клин (n=1,5) с малым углом нормально к его грани падает параллельный пучок лучей монохроматического света с длиной волны 0,698 мкм. Определить угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм. [ ].

1.27. На тонкий стеклянный клин (n=1,5) нормально падает монохроматический свет. Угол клина равен . Определить длину световой волны, если расстояние между двумя соседними интерференционными максимумами в отраженном свете равно 0,2 мм. [698 нм].

1.28. На стеклянный клин (n=1,5) падает нормально пучок света с длиной волны 0,582 мкм. Угол клина равен . Какое число темных интерференционных полос приходится на единицу длины клина? [5 полос на 1 см].

1.29. Между двумя плоскопараллельными стеклянными пластинками (n=1,5) положили очень тонкую проволочку. Проволочка находится на расстоянии 75 мм от линии соприкосновения пластинок и ей параллельна. В отраженном свете с длиной волны 0,5 мкм на верхней пластинке видны интерференционные полосы. Определить толщину проволочки, если на протяжении 30 мм насчитывается 16 светлых полос. [10 мкм].

1.30. Между двумя плоскопараллельными стеклянными пластинками (n=1,5) на расстоянии 10 см от границы их соприкосновения находится проволока диаметром 0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим светом с длиной волны 0,6 мкм. Определить ширину интерференционных полос, наблюдаемых в отраженном свете. [3 мм].

1.31. Монохроматический свет падает нормально на поверхность воздушного клина, причем расстояние между интерференционными полосами равно 0,4 мм. Определить расстояние между интерференционными полосами, если пространство между пластинами, образующими клин, заполнить прозрачной жидкостью с показателем преломления n=1,33. [0,3 мм].

Кольца Ньютона

1.32. Радиус второго темного кольца Ньютона в отраженном свете равен 0,4 мм. Определить радиус кривизны плосковыпуклой линзы, взятой для опыта, если она освещается светом с длиной волны 0,64 мкм. [125 мм].

1.33. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны 0,6 мкм равен 0,82 мм. Радиус кривизны линзы равен 0,5 м. [1,34].

1.34. На стеклянную пластинку положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны 500 нм. Найти радиус кривизны линзы, если радиус четвертого темного кольца Ньютона в отраженном свете равен 2 мм. [2 м].

1.35. Плосковыпуклая стеклянная линза с радиусом кривизны 0,5м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете равен 1,1 мм. Определить длину световой волны. [0,484 мкм].

1.36. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом с длиной волны 600 нм. Определить толщину воздушного промежутка в том месте, где в отраженном свете наблюдается первое светлое кольцо. [0,15 мкм].

1.37. Расстояние между вторым и первым тёмными кольцами Ньютона в отраженном свете равно 1 мм. Определить расстояние между десятым и девятым темными кольцами. [0,39 мм].

1.38. Диаметр второго светлого кольца Ньютона при наблюдении в отраженном свете с длиной волны 0,6 мкм равен 1,2 мм. Определить радиус кривизны плосковыпуклой линзы, взятой для опыта. [0.4м].

1.39. Плосковыпуклая линза с радиусом кривизны 0,3 м выпуклой стороной лежит на стеклянной пластинке. Радиус четвертого темного кольца Ньютона в проходящем свете равен 0,7 мм. Определить длину световой волны. [0,47 мкм].

1.40. Плосковыпуклая линза с радиусом кривизны 4 м выпуклой стороной лежит на стеклянной пластинке. Определить длину волны падающего монохроматического света, если радиус пятого светлого кольца в отраженном свете равен 3 мм. [0,5 мкм].

1.41. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом с длиной волны 550 нм. Определить толщину воздушного промежутка в том месте, где в отраженном свете наблюдается четвертое темное кольцо. [1,1 мкм].

1.42. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом с длиной волны 600 нм. Пространство между линзой и стеклянной пластинкой заполнено жидкостью, и наблюдение ведется в проходящем свете. Радиус кривизны линзы равен 4 м. Определить показатель преломления жидкости, если радиус второго светлого кольца равен 1,8 мм. [1,48].

1.43. Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке. Радиус третьего светлого кольца в проходящем свете с длиной волны 0,6 мкм равен 0,9 мм. Определить радиус кривизны линзы. [0,45 м].

1.44. Плосковыпуклая линза с радиусом сферической поверхности 12,5 см прижата к стеклянной пластинке. Диаметр десятого темного кольца Ньютона в отраженном свете равен 1 мм. Определите длину волны света. [0,2 мкм].

1.45. Установка для наблюдения колец Ньютона освещается монохроматическим светом, падающим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в отраженном свете уменьшились в 1,21 раза. Определить показатель преломления жидкости. [1,46].

1.46. Найти радиус центрального темного пятна колец Ньютона, если между линзой и пластинкой налит бензол (n=1,5). Радиус кривизны линзы равен 1 м. Показатели преломления линзы и пластинки одинаковы. Наблюдение ведется в отраженном свете с длиной волны 589 нм. [0,63 мм].

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1798 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2853 - | 2410 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.