Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение Бернулли. Определение.




Дифференциальное уравнение вида , где , называется уравнением Бернулли.

Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим: (8.1) Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x): , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y. При добавляется решение y(x)=0. Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли.

 

Дифференциальные уравнения в полных дифференциалах.

Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y), то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0, следовательно, его общий интеграл есть u(x,y)=c.

Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.

Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x. Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).

Доказательство. Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y), что и .

Действительно, поскольку , то (9.3), где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y: . Но , следовательно, .Положим и тогда .Итак, построена функция , для которой , а .

 

Интегрирующий множитель.

Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y), такая что после умножения на нее обеих частей уравнения получается уравнение

µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du, то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1.

Если найден интегрирующий множитель µ, то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.

Если µ есть непрерывно дифференцируемая функция от x и y, то .

Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка: (10.1). Если заранее известно, что µ= µ(ω), где ω – заданная функция от x и y, то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной ω: (10.2), где , т. е. дробь является функцией только от ω.

Решая уравнение (10.2), находим интегрирующий множитель , с = 1. В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (ω = x) или только от y (ω = y), если выполнены соответственно следующие условия: , или , .

10. Свойства решений ЛДУ II-го порядка (с док-вом). Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид: , (2.1)

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a0(x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде: (2.2)

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае. Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду , (2.3) то их линейная комбинация также будет решением этого уравнения.

Доказательство. Поставим выражение в (2.3) и покажем, что в результате получается тождество:

.

Перегруппируем слагаемые: .

Поскольку функции и являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при , что если – решение уравнения (2.3), то тоже есть решение этого уравнения. Следствие 2. Полагая , видим, что сумма двух решений лоду также является решением этого уравнения. Замечание. Доказанное в теореме свойство решений остается справедливым для лоду любого порядка.

 

11. Линейная зависимость и независимость функций. Определитель Вронского. Фундаментальная система решений. ЛОДУ II-го порядка.

Фундаментальной системой решений линейного однородного дифференциального уравнения n -го порядка называется любая линейно независимая система y 1(x), y 2(x), …, yn (x) его n частных решений.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 2213 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2391 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.