Сходящимися называются силы, линии действия которых пересекаются в одной точке.
Если у такой системы сил л.д. расположены в одной плоскости, то она называется плоской системой сходящихся сил. В любом другом случае система сходящихся сил пространственная.
Равнодействующая сходящихся сил равна геометрической сумме этих сил и приложена в точке их пересечения . Равнодействующая может быть найдена геометрическим способом – построением силового (векторного) многоугольника или аналитическим способом, проектируя силы на оси координат.
Геометрический способ:
Теорема: любая система сходящихся сил приводится к равнодействующей, равной геометрической сумме составляющих сил и приложенных в точках пересечения линий их действия.
Сложность данного подхода в сложности геометрических построений.
Для упрощения построений сложим геометрически силы следующим образом: конец предыдущей силы должен совпадать с началом следующего, а л.д. сил должны быть параллельны заданным.
Замыкающая, полученная таким образом, и будет являться вектором равнодействующей, причем он должен быть направлен то начала к концу.
Аналитический способ:
Проекцией силы на ось называется направленный отрезок, заключенный между перпендикулярами, проведенными к соответствующей оси из начала к концу вектора силы.
В случае пространственной системы сил используется метод двойного проецирования: сначала сила проецируется на плоскость, а затем определяются проекции полученной проекции на осях координат.
Условия равновесия системы сходящихся сил в геометрической и аналитической формах. Теорема о трех непараллельных силах.
Геометрическое условие равновесия:
Силовой многоугольник должен быть замкнут, т.е. конец последнего вектора должен совпадать с началом первого.
Аналитическое условие равновесия:
Равенство 0 проекций равнодействующей на оси координат (Rx=0, Ry=0, Rz=0).
Для равновесия тел, находящихся под действием системы сходящихся сил, необходимо и достаточно, чтобы равнодействующая была равна 0 (R=0).
Для равновесия тела, находящегося в системе сходящихся сил, необходимо и достаточно, чтобы были равны 0 алгебраические суммы проекций всех сил на оси произвольно выбранных систем координат.
Теорема о трех непараллельных силах:
Используется когда известны величина и направление одной силы, линия действия другой и точка приложения третьей.
Линии действия трех непараллельных уравновешенных сил, лежащих в одной плоскости, пересекаются в одной точке.
R12=F1+F2
Равновесие равнодействующей R12 сил F1 и F2 возможно только в том случае, если третья сила F3 будет направлена по линии действия R12 противоположно ей, т.е. проходить через точку пересечения линии действия сил F1 и F2.
Сложение двух параллельных сил. Момент силы относительно центра. Выражение векторного момента силы в виде векторного произведения. Аналитическое выражение момента силы относительно точки. Теорема Вариньона о моменте равнодействующей системы сходящихся сил.
Алгебраическим моментом силы F относительно некоторого центра называется взятое со знаком + или - произведение модуля силы F на плечо (кротчайшее расстояние от точки до линии действия силы). Момент положителен, если сила стремиться вращать плоскость действия против часовой стрелки и наоборот. (M=F*h) Но при этом h можно выразить через радиус-вектор r (h=r*sin α), тогда M = F*r*sin α = (F x r). Получаем, что векторный момент силы относительно точки – векторная величина.
Т-ма Вариньона:
Момент равнодействующей пространственной системы сходящихся сил относительно какого-либо центра равен векторной сумме моментов составляющих сил относительно того же центра.