Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение. Матрицу , получаемую из матрицы А заменой строк и столбцов друг на друга, называют транспонированной




Например, если , то .

1. Любую матрицу можно умножить на любое действительное число : .

2. Матрицы одной и той же размерности можно складывать (вычитать):

3. Матрицу А можно умножать на матрицу В только, если число столбцов матрицы А равно числу строк матрицы В:

,

причем элементы матрицы С находятся по правилу:

,

то есть элементы i– ой строки матрицы А умножаются на соответствующие элементы j –го столбца матрицы В и полученные произведения складываются.

 

§ 2. Определители и их вычисление.

 

Каждой квадратной матрице по определенному правилу ставится в соответствие число, называемое определителем.

1. Правило вычисления определителя 2-го порядка:

2. Правило вычисления определителя 3-го порядка – правило треугольников:

Правило разложения определителя по элементам 1-й строки:

, где алгебраические дополнения , а минор – определитель, получающийся из данного путем вычеркивания i- ой строки и j- го столбца.

Таким образом,

Аналогично определитель можно раскладывать по элементам любой строки или столбца.

3. Правило вычисления определителя n –го порядка. Определители n –го порядка вычисляются также разложением по элементам любой строки или столбца.

Таким образом,

– разложение определителя по элементам i –ой строки

или

– разложение определителя по элементам j –го столбца

 

§ 3. Решение систем линейных уравнений

 

1. Формулы Крамера для решения систем трех линейных уравнений с тремя неизвестными:

где

 

2. Метод Гаусса.

Сущность метода состоит в том, что посредством последовательных исключений неизвестных, данная система преобразуется в систему ей эквивалентную. Последовательное исключение неизвестных осуществляется с помощью элементарных преобразований системы:

а) перестановок двух любых уравнений;

б) умножений обеих частей одного из уравнений на любое, отличное от нуля число;

в) прибавление к обеим частям одного из уравнений соответствующих частей другого, умноженных на любое число.

Заметим, что удобно работать не с самими уравнениями системы, а с ее расширенной матрицей.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1422 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.