Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Проверка статистических гипотез




 

Ни одно исследование не обходится без сравнений. Сравнивать приходится данные опыта с контролем, эффективность действия препаратов, продуктивность одной группы животных с продуктивностью другой и т.д.

Обычно, между сравниваемыми данными всегда имеются различия. Иногда различиями пренебрегают и утверждают, что, в целом, данные контрольной группы совпадают с данными опытной группы, другими словами различия между полученными данными недостоверны. В другом случае различиями пренебречь нельзя и в таком случае говорят, что различия между полученными данными достоверны. В каком случае делается тот или иной вывод?

Введём несколько основных понятий:

 

1. - нулевая гипотеза, которая предполагает, что полученная в опыте разница между исследуемыми параметрами случайна;

2. - альтернативная гипотеза, которая противоречит нулевой и предполагает, что полученная в опыте разница между исследуемыми параметрами не случайна;

3. a - уровень значимости, равен вероятности ошибки, допускаемой при оценке принятой гипотезы (обычно равен 0,05; 0,01; 0,001).

 

Принять или отклонить гипотезу можно после её проверки. Для этих целей служит величина, называемая статистическим критерием или просто критерием.

Критерии, которые вычисляются по исходным данным (выборкам) tф (фактические критерии) с р а в н и в а ю т с я с табличными критериями tкр.

 

ОСНОВНОЙ ПРИНЦИП проверки статистических гипотез сводится к следующему:

 

если фактически установленная величина kф превзойдёт или окажется равной критическому значению kкр, kф ³ kкр, то нулевую гипотезу отвергают. Если kф < kкр, принимают нулевую гипотезу.

 


 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1725 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2900 - | 2666 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.