Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение одного уравнения




Для решения уравнения с одним неизвестным используется функция root. Аргументами этой функции являются выражение, переменная, входящая в выражение, и интервал, в котором ищется корень. Функция возвращает значение переменной, которое обращает выражение в нуль (рис. 4.1):

root (f(var1), x,[a, b]),

f(var1) – это либо функция, определенная в рабочем документе, или выражение, обращенное в нуль Выражение должно возвращать скалярное значение;

x – имя переменной, которое используется в выражении. Это та переменная, варьируя которую MathCAD11 будет пытаться обратить выражение в нуль;

[a, b] – интервал поиска корня; a и b должны быть действительными числами, a<b. Они являются необязательными параметрами.

Если интервал [a, b] не указан, то необходимо переменной x присвоить некоторое начальное значение до начала использования функции root.

MathCAD11 в функции root использует для поиска корня метод секущей. Значение a используется как начальное приближение при поиске корня (если иное не указано). Когда значение f(var1) приочередном приближении становится меньше значения встроенной переменной TOL (по умолчанию 0.001), корень считается найденным, и функция возвращает результат. Можно изменить точность, с которой функция root ищет корень, изменив значение встроенной переменной TOL. Например, присвоив TOL:=0.1.

Если функция root не сходится:

§ Уравнение не имеет корней;

§ Корни уравнения находятся вне интервала поиска, либо далеко от начального приближения;

§ Выражение имеет разрывы между начальным приближением и корнями;

§ Выражение имеет локальные максимумы или минимумы между начальным приближением и корнями.

Чтобы установить причину ошибки, следует исследовать график функции f(x). Он поможет выяснить наличие корней уравнения f(x)=0 и, если они есть, то определить приблизительно их значения.

Рис. 4.1. Использование графика и функции root для поиска корней уравнения





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1517 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2530 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.