Концепции погрешности и неопределенности измерений преследуют единую цель – количественно охарактеризовать результат измерения с точки зрения его точности. В обеих концепциях прослеживается единая схема оценки характеристик погрешности и неопределенности измерения: начиная с анализа измерительной задачи и уравнения измерения, выявления всех источников погрешности (неопределенности) результата измерения, введения поправок на все известные систематические эффекты (погрешности) и, наконец, оценивания характеристик составляющих погрешности (стандартных неопределенностей) и вычисление характеристики погрешности (неопределенности) результата измерения.
Ниже приводятся используемые в этих концепциях оценки характеристик погрешности (неопределенности) измерения.
1. Для характеристики случайной погрешности используется среднееквадратическое отклонение (СКО): s и его оценка s для единичного измерения и для среднего арифметического в серии измерений.
Если необходимо указание случайной погрешности с доверительной вероятностью, большей, чем 68 %, то вычисляются доверительные границы случайной погрешности e по формуле:
где tq - коэффициент Стьюдента, который зависит от доверительной вероятности и числа наблюдений. неопределенность по типу А)
В концепции неопределенности используется неопределенность по типу А, определяемая как экспериментальное стандартное отклонение единичного измерения и экспериментальное стандартное отклонение среднего значения, определяемые, соответственно, по формулам, аналогичным для определения для и .
2. Границы неисключенной систематической погрешности (НСП) Q результата измерения вычисляют путем построения композиции границ неисключенных систематических погрешностей q i, обусловленных различными источниками (они трактуются как квазислучайные величины). В предположении их равномерного распределения Q вычисляется по формуле:
где k – коэффициент, определяемый принятой доверительной вероятностью. При доверительной вероятности 0,95 он равен 1,1, при доверительной вероятности 0,99 он равен 1,4. Доверительная вероятность принимается той же, что и при вычислении доверительных границ случайной погрешности результата измерения.
В концепции неопределенности измерений вычисляется стандартная неопределенность по типу В, примеры вычисления которой были рассмотрены выше.
3. Для выражения суммарной погрешности, учитывающим случайные погрешности и НСП, находится суммарная средняя квадратическая погрешность результата измерения Så по формуле раздела 4.6.7.
В концепции неопределенности для этой цели используется суммарная стандартная неопределенность ис(у) определяется по приведенным выше формулам.
4. Доверительные г раницы погрешности результата измерения Då (граница доверительного интервала) находится путем построения композиции распределений случайных погрешностей и НСП по формулам раздела 4.6.7.
В концепции неопределенности измерений используется р асширенная неопределенность, которая вычисляется путем умножения суммарной неопределенности на коэффициент охвата, находящийся в диапазоне от 2 до 3.
Таким образом, можно констатировать соответствие между неопределенностями и погрешностями на уровне количественных оценок. Так, для расширенной неопределенности и границы погрешности результата измерения их количественные оценки различаются лишь на погрешность оценивания погрешности. Следует при этом отметить, что процедура определения коэффициента охвата, соответствующего коэффициенту tå в концепции погрешности формализована строже и более удобна для практике.
Однако, интерпретация отмеченных количественных оценок различна в этих двух концепциях. Так, доверительные границы погрешности, отложенные от результата измерения, накрывают истинное значение измеряемой величины с заданной доверительной вероятностью. В то время как аналогичный интервал - расширенная неопределенность трактуется как интервал, содержащий заданную долю распределения значений, которые могли бы быть обоснованно приписаны измеряемой величине. В общем случае нет однозначного соответствия между случайными погрешностями и неопределенностями, вычисленными по типу А, а также между НСП и неопределенностями, вычисленными по тип В. Деление на случайные и систематические погрешности обусловлено природой их появления и свойствами, которые проявляются в процессе измерений. Деление же неопределенностей на тип А и В обусловлено методами их расчета.
Следует отметить, что несомненным достоинством концепции неопределенности измерений является единый принцип использования стандартной неопределенности для всех составляющих погрешности, что привлекательно для практического использования.
И, наконец, в «Руководстве по выражению неопределенности измерений» оговаривается тот случай, когда все источники неопределенности учтены и количественно оценены, а измерительная задача корректно поставлена. В таком случае неопределенность является мерой возможной погрешности. Такая ситуация как раз и является наиболее распространенной в метрологической практике. Например, при передаче размеров единиц физических величин.
5.3 Использование концепции неопределенности
В связи с появлением Руководства и ряда отечественных документов по использованию неопределенности измерений, возникает вопрос, следует ли полностью отказаться от концепции погрешности измерений и перейти на принципы, изложенные в Руководстве. Среди метрологов нет единого мнения в этом вопросе. Так, в упомянутом выше РМГ 43-2001 говориться, что концепцией неопределенности целесообразно пользоваться при проведении совместных работ с зарубежными странами, при подготовке публикаций в зарубежной печати в при выполнения международных метрологических работ.
Кроме того, ряд авторов предлагает для тех видов и групп средств измерений, которые обеспечены поверочными схемами, восходящими к государственным эталонам, сохранить концепцию погрешности измерений. Это объясняется тем, что величины, воспроизводимые эталонами, имеют наивысшую на данный момент времени точность и воспринимаются как истинные значения величин.
Для тех же видов и средств измерений, которые не обеспечены государственными эталонами и поверочными схемами, можно использовать концепцию неопределенности измерений и разрабатывать документацию в соответствии с Руководством.