Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производная по направлению




Рассмотрим функцию u(x, y, z) в точке М(x, y, z) и точке М1(x + Dx, y + Dy, z + Dz). Проведем через точки М и М1 вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .

Расстояние между точками М и М1 на векторе обозначим DS.

Высказанные выше предположения, проиллюстрируем на рисунке:

z

 

M

 

 

M1

y

 

x

 

Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным х, у и z. Тогда правомерно записать следующее выражение:

,

где величины e1, e2, e3 – бесконечно малые при .

Из геометрических соображений очевидно:

Таким образом, приведенные выше равенства могут быть представлены следующим образом:

 

;

Определение: Предел называется производной функции u(x, y, z) по направлению вектора в точке с координатами (x, y, z).

Поясним значение изложенных выше равенств на примере.

Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).

Решение. Прежде всего необходимо определить координаты вектора .

=(3-1; 0-2) = (2; -2) = 2 .

Далее определяем модуль этого вектора:

=

Находим частные производные функции z в общем виде:

Значения этих величин в точке А:

Для нахождения направляющих косинусов вектора производим следующие преобразования:

=

За величину принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.

Отсюда получаем значения направляющих косинусов вектора :

cosa = ; cosb = -

Окончательно получаем: - значение производной заданной функции по направлению вектора .





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 478 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.