Лекции.Орг

Поиск:


Формы распределения. Коэффициенты асимметрии и эксцесса




Любое реальное распределение можно изобразить схематически в виде кривой, воспроизводящей основные особенности данного распределения. Под кривой распределения понимается графическое изображение в виде непрерывной линии изменения частот, функционально связанных с изменением вариант.

Элементами распределения являются:

  • варианта
  • частота

В зависимости от вида кривых, изображающих распределение, выделяют несколько основных типов распределения:

  • одновершинные
  • многовершинные

К одновершинным относятся те, в которых один, обычно центральный вариант, имеет наибольшую частоту (плотность распределения). Частоты же остальных вариантов убывают по мере удаления от центрального.

Если частоты убывают слева и справа от центрального значения одинаково, то такие распределения называются симметричными.

Если частоты убывают слева и справа от центра распределения с разной скоростью, то такие распределения называют асимметричными.

Многовершинные распределения — это распределения, в которых несколько центров, т. е. такие, у которых несколько максимумов частот.

Для однородных совокупностей, как правило, характерны одновершинные распределения.

Многовершинность распределения свидетельствует о неоднородности изучаемого явления. В этом случае необходимо произвести перегруппировку данных с целью выделения более однородных групп.

Выяснение общего характера распределения предполагает, наряду с оценкой его однородности, вычисление показателей асимметрии и эксцесса.

Кривые распределения бывают:

  1. симметричными
  2. асимметричными.

В зависимости от того, какая ветвь кривой распределения вытянута, различают:

  1. правостороннюю асимметрию
  2. левостороннюю асимметрию.

Для характеристики степени асимметрии двух или нескольких рядов пользуютсякоэффициентом асимметрии.

Для одновершинных распределений:

Более точным является коэффициент асимметрии, рассчитанный как отношение центрального момента третьего порядка (μ3) к среднеквадратическому отклонению в 3-й степени (Ϭ3):

1. Для симметричного распределения:

Соответственно, в симметричном распределении центральный момент 3-го порядка равен нулю (μ3=0), т. е. алгебраическая сумма отклонений отдельных значений признака (вариант), расположенных слева и справа от средней, равна нулю. График симметричного распределения симметричен относительно точки максимума.

Для несимметричных распределений центральные моменты нечетного порядка отличны от нуля:

2. Асимметрия положительна(As>0), если длинная часть кривой распределения расположена справа от модыо). В этом случае соотношение между средней, медианой и модой нарушено:

3. Асимметрия отрицательна(As<0), если длинная часть кривой распределения расположена слева от модыо).

As< 0.25 – слабая асимметрия

As= 0.25-0.5 – умеренная асимметрия

As> 0.5 – крайне асимметричное распределение

Для оценки «крутизны» (островершинности) распределения пользуются характеристикой – эксцессом.

Коэффициент эксцесса:

1. Для нормального распределения:

2. Выше нормального (островершинное распределение):

3. Ниже нормального (плосковершинное распределение):






Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 1179 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Поиск на сайте:

Рекомендуемый контект:




© 2015-2021 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.