Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Мощность и энергия сигналов [1,3,16]




Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений (отсчетов) во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного, сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность (instantaneous power) сигнала по определению задается выражением:

w(t) = s(t) s*(t) = [a(t)+jb(t)] [a(t)-jb(t)] = a2(t)+b2(t) = |s(t)|2, (2.2.1)

т.е. функция распределения мгновенной мощности по аргументу сигнала равна квадрату функции его модуля, для вещественных сигналов - квадрату функции амплитуд.

Аналогично для дискретных сигналов:

wn = sn s*n = [an+jbn] [an-jbn] = an2 + bn2 = |sn|2, (2.2.1')

 

Энергия сигнала (также по определению) равна интегралу от мощности по всему интервалу существования или задания сигнала. В пределе:

Еs = w(t)dt = |s(t)|2dt. (2.2.2)

Es = wn = |sn|2. (2.2.2')

Мгновенная мощность w(t) является плотностью мощности сигнала, так как измерения мощности возможны только через энергию на интервалах ненулевой длины:

w(t) = (1/Dt) |s(t)|2dt.

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

Как правило, сигналы изучаются на определенном интервале Т, для периодических сигналов - в пределах одного периода Т, при этом средняя мощность (average power) сигнала:

WT(t) = (1/T) w(t) dt = (1/T) |s(t)|2 dt. (2.2.3)

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала должно производиться по формуле:

Ws = w(t) dt. (2.2.3')

Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (root mean sqare, RMS).

Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):

w(t) = |s(t)|2/R,

а полная выделенная на резисторе тепловая энергия определяется соответствующим интегрированием мгновенной мощности w(t) по интервалу задания напряжения s(t) на резисторе R. Физическая размерность мощности и энергии в этом случае определяется соответствующей физической размерностью функции напряжения s(t) и сопротивления резистора R. Для безразмерной величины s(t) при R=1 это полностью соответствует выражению (2.2.1). В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналов используются в более широком смысле, чем в физике. Они представляют собой специфические метрологические характеристики сигналов.

Из сравнения выражений (2.1.2) и (2.2.2) следует, что энергия и норма сигнала связаны соотношениями:

Es = ||s(t)||2, ||s(t)|| = (2.2.4)

Пример. Цифровой сигнал задан функцией s(n) = {0,1,2,3,4,5,4,3,2,1,0,0,0,0....}.

Энергия сигнала: Es = s2(n) = 1+4+9+16+25+16+9+4+1 = 85. Норма: ||s(n)|| = » 9.22

Вычислим энергию суммы двух произвольных сигналов u(t) и v(t):

E = [u(t)+v(t)]2 dt = Eu + Ev + 2 u(t)v(t) dt. (2.2.5)

Как следует из этого выражения, энергии сигналов (а равно и их мощности), в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию:

Euv = 2 u(t)v(t) dt. (2.2.6)

Нетрудно заметить, что энергия взаимодействия сигналов равна их удвоенному скалярному произведению:

Euv = 2 áu(t), v(t)ñ. (2.2.6')

При обработке данных используются также понятия мощности взаимодействия двух сигналов x(t) и y(t):

wxy(t) = x(t) y*(t), (2.2.7)

wyx(t) = y(t) x*(t),

wxy(t) = w*yx(t).

Для вещественных сигналов:

wxy(t) = wyx(t) = x(t) y(t). (2.2.8)

С использованием выражений (2.2.7-8) интегрированием по соответствующим интервалам вычисляются значения средней мощности взаимодействия сигналов на определенных интервалах Т и энергия взаимодействия сигналов.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 791 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.