Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные уравнения динамики жидкости




 

Для получения дифференциальных уравнений движения воспользуемся уравнениями равновесия Эйлера в виде (2.1), а также принципом Даламбера, который заключается в следующем: если в систему уравнений равновесия прибавить силы инерции, взятые с обратным знаком, то эти уравнения будут описывать уже процесс движения жидкости.

Силы давления и массовые силы в уравнениях Эйлера отнесены к единице массы. Если выражение для силы инерции отнести к единице массы, то получим в проекциях на оси координат

Тогда система дифференциальных уравнений движения невязкой жидкости, называемая также системой Эйлера, будет иметь вид

  (3.10)

Напомним, что равномерное движение – это частный случай установившегося движения, характеризующийся тем, что по длине потока площадь трубы ω = const, а так как расход тоже постоянный, т. е. Q = const, то и скорость потока = const. Несмотря на такую, казалось бы, простоту, этот частный случай широко реализуется и для равномерных потоков в трубопроводах, и для неравномерного медленно меняющегося движения.

Рассмотрим равновесие отсека жидкости, движущейся в трубопроводе (рис. 3.18).

Рис. 3.18

 

Как известно, равномерное прямолинейное движение – это один из случаев равновесия. А согласно первому закону Ньютона, если тело находится в равновесии, то сумма всех сил, действующих на него, равна нулю.

Будем считать, что весь механизм трения сосредоточен на поверхности соприкосновения потока со стенками трубопровода, внутреннее трение в массиве жидкости учитывать не будем.

Тогда силы трения на стенках будут равны:

где τ – касательное напряжение трения;

– смоченный периметр;

l – длина рассматриваемого отсека.

Помимо сил трения на рассматриваемый отсек действуют силы давления P 1 и P 2 – по оси движения, а такжесила тяжести жидкости в отсеке .

Составим уравнение равновесия, т. е. равенства нулю сил, действую-щих на жидкость, в проекции на ось движения:

или

где

Разделим это уравнение на . Получим:

или

Левая часть равенства – это пьезометри-ческий уклон. Отношение – гидравлический радиус. Окончательно получаем

  (3.11)

В случае равномерного движения пьезометрический уклон равен гидравлическому. Тогда получаем

  (3.12)

Это и есть основное уравнение равномерного движения жидкости.

 





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 807 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2575 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.