Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Математическая модель




Системы с несколькими степенями свободы

(на примере двухмассовой)

Математическая модель

Податливости δ11, δ12 = δ21, δ22 определяется аналитически или численно. Их определение не представляет проблемы даже в сложных конструкциях. Однако при численном определении податливостей погрешности вычисления могут существенно влиять на точность определение собственных круговых частот. Поэтому при интегрировании дифференциальных уравнений необходимо повышать настройку точности поиска решения, уменьшать шаг интегрирования или переходить от метода Эйлера к методам Рунге-Кутта.

Математическая модель n-массовой системы строится аналогично двухмассовой. Поэтому мы ограничимся подробным рассмотрением только двухмассовой модели. Как и выше, для сокращения записей будем считать мерой инерции массы, а внешними воздействиями силы. Сразу учтем возможное кинематическое возбуждение.

 

Решение иллюстрируем на следующем тестовом примере.

Аналитическое решение для податливостей в примере (приводится без вывода, вывод на самостоятельную проработку к экзамену)

.

Вычисляя перемещения в каждом направлении (степени свободы) получаем для двухмассовой системы

,

, (*)

систему дифференциальных уравнений, которая совместно с начальными условиями: составляет разрешающую систему уравнений. Нетрудно продлить модель на n-массовую систему.

Рассмотрим основные задачи динамики, принимая во внимание результаты анализа одномассовой модели.

 





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 488 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2377 - | 2244 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.