Рассмотрим некоторое линейное преобразование А с матрицей.
Это симметрическое преобразование можно записать в виде:
y1 = a11x1 + a12x2
y2 = a12x1 + a22x2
где у1 и у2 – координаты вектора в базисе.
Очевидно, что квадратичная форма может быть записана в виде
Ф(х1, х2) = х1у1 + х2у2.
Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение.
Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.
Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:
При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и. Тогда:
Тогда.
Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.
Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.
Пример. Привести к каноническому виду квадратичную форму
Ф(х1, х2) = 27.
Коэффициенты: а11 = 27, а12 = 5, а22 = 3.
Составим характеристическое уравнение:;
(27 - )(3 - ) – 25 = 0
2 - 30 + 56 = 0
1 = 2; 2 = 28;
Закон инерции квадратичных форм выражает
Теорема 11.4. Число положительных и число отрицательных квадратов в нормальном виде, к которому приводится данная действительная квадратичная форма невырожденным действительным линейным преобразованием, не зависит от выбора преобразования.
Число положительных квадратов в нормальной форме, к которой приводится данная действительная квадратичная форма, называют положительным индексом инерции этой формы, число отрицательных квадратов - отрицательным индексом инерции, разность между положительным и отрицательным индексами инерции - сигнатурой формы/ Если известен ранг формы, то задание любого из трех указанных выше чисел определяет два других.
Действительная квадратичная форма является положительно-определенной тогда и только тогда, когда она принимает положительные значения при любой ненулевой системе значений переменных.
Матрицей является положительно-определенной тогда и только тогда, когда все ее главные миноры положительны.
Действительная квадратичная форма называется отрицательно-определенной, если она является невырожденной и приводится к нормальному виду, содержащему только отрицательные квадраты всех переменных; эту форму можно привести к виду
Квадратичная форма является отрицательно-определенной тогда и только тогда, когда ее главные миноры четного порядка положительны, а нечетного — отрицательны.
Положительно-определенные и отрицательно-определенные квадратичные формы называются знакоопределенными квадратичными формами.
Критерий Сильвестра определяет, является ли симметричная квадратная матрица положительно (отрицательно, неотрицательно) определённой.
Пусть квадратичная форма имеет в каком-то базисе матрицу
Тогда эта форма положительно определена, тогда и только тогда когда все её главные (угловые) миноры положительны. Форма отрицательно определена, если и только если знаки чередуются, причём . Здесь главными минорами матрицы называются определители вида
Для неотрицательно определённых матриц критерий действует только в одну сторону: если форма неотрицательно определена, то главные миноры неотрицательны. Обратное неверно. Например, матрица
не является неотрицательно определённой — так как, например, для . В то же время все её главные миноры равны 0, то есть неотрицательны.