Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними.




Скалярное произведение векторов и будем обозначать как . Тогда формула для вычисления скалярного произведения имеет вид , где и - длины векторов и соответственно, а - угол между векторами и .

Из определения скалярного произведения видно, что если хотя бы один из умножаемых векторов нулевой, то .

Вектор можно скалярно умножить на себя. Скалярное произведение вектора на себя равно квадрату его длины, так как по определению .

Угол между векторами — угол между направлениями этих векторов (наименьший угол).

По определению, угол между двумя векторами находится в промежутке [0°; 180°].
Угол между векторами обозначается так: .
Если векторы перпендикулярны, то угол между ними равен 90º. Если векторы сонаправлены, в частности один из них или оба нулевые, то угол между ними равен 0о. Если противоположно направленные векторы, то угол между ними равен 180º.
Угол между двумя ненулевыми векторами находится с помощью вычисления скалярного произведения. По определению скалярное произведение равно произведению длин векторов на косинус угла между ними (скалярное произведение для двух векторов с координатами (x1; y1) и (x2; y2) вычисляется по формуле: x1x2 + y1y2).

 

15. N-мерным вектором называется последовательность чисел. Эти числа называются координатами вектора. Число координат вектора n называется размерностью вектора.

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

Система линейно зависима что

Система линейно независима

 

16. Векторное (линейное) пространство — это математическая структура, которая формируется набором элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр.

Размерностью векторного пространства называется число, равное максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – это упорядоченная совокупность линейно независимых векторов этого пространства, число которых равно размерности пространства.

 

17. Скалярным квадратом n-мерного вектора называется скалярное произведение вектора на себя:

 

Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно -мерное евклидово пространство обозначается , хотя часто используется не вполне приемлемое обозначение .

Норма в векторном пространстве над полем вещественных или комплексных чисел — это функционал , обладающий следующими свойствами:

1.

2. (неравенство треугольника);

3.

Эти условия являются аксиомами нормы.

18. Условия ортогональности векторов. Два вектора a и b

ортогональны (перпендикулярны), если их скалярное произведение равно нулю

a· b= 0

Так в случае плоской задачи вектора a= {ax;ay}и b= {bx; by} ортогональны, если a· b = ax · bx + ay · by = 0

Базис e1, e2, …, en в n –мерном евклидовом пространстве En называется ортогональным, если (ei, ej) = 0 ij, т.е. все векторы попарно ортогональны.

Ортогональный базис из единичных векторов называется ортонормированным.

19. Оператором называется правило, по которому каждому элементу x некоторого непустого множества X ставится в соответствие единственный элемент y некоторого непустого множества Y. Говорят, что оператор действует из X в Y.

Действие оператора обозначают y = A (x), y — образ x, x — прообраз y.

Если каждый элемнт y из Y имеет единственный прообраз x из X, y = A (x), оператор называют взаимно однозначным отображением X в Y или преобразованием X, X — область определения оператора.

Пусть X и Y два линейные пространства. Оператор A, действующий из X в Y, называется линейным оператором, если для любых двух элементов u и v из X и любого числа α справедливо:

A (u + v) = A (u) + A (v), A (α· u) = α· A (u).

Если элементу x соответствует y, то y называется образом элемента x, а x - прообразом элемента y. Пишут: или y = f (x). Множество A всех элементов , имеющих один и тот же образ , называется полным прообразом элемента y.

20. Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f, A = { aij }= {A(e j) i }:

Координаты образа y = A (x) и прообраза x связаны соотношеннием:

y = A · x,


21. Наиболее просто устроены матрицы диагонального вида . Возникает вопрос, нельзя ли найти базис, в котором матрица линейного оператора имела бы диагональный вид. Такой базис существует.

Пусть дано линейное пространство Rn и действующий в нем линейный оператор A; в этом случае оператор A переводит Rn в себя, то есть A:Rn → Rn.

Определение. Ненулевой вектор называется собственным вектором оператора A, если оператор A переводит в коллинеарный ему вектор, то есть . Число λ называется собственным значением или собственным числом оператора A, соответствующим собственному вектору .

Отметим некоторые свойства собственных чисел и собственных векторов.

1. Любая линейная комбинация собственных векторов оператора A, отвечающих одному и тому же собственному числу λ, является собственным вектором с тем же собственным числом.

2. Собственные векторы оператора A с попарно различными собственными числами λ1, λ2, …, λmлинейно независимы.

3. Если собственные числа λ12= λm= λ, то собственному числу λ соответствует не более m линейно независимых собственных векторов.

Итак, если имеется линейно независимых собственных векторов , соответствующих различным собственным числам λ1, λ2, …, λn, то они линейно независимы, следовательно, их можно принять за базис пространства Rn. Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы: тогда .

Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.

Характеристическим многочленом оператора называется многочлен .Характеристический многочлен линейного оператора не зависит от выбора базиса, в котором представлена его матрица. Уравнение называется характеристическим уравнением оператора .

 

22. Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы: тогда .

Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.

23. Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора. Матрица квадратичной формы в произвольном базисе совпадает с матрицей полярной ей билинейной формы в том же базисе..

Матрицу называют матрицей квадратичной формы в данном базисе. В случае, если характеристика поля не равна 2, можно считать, что матрица квадратичной формы симметрична, то есть .

Если матрица квадратичной формы имеет полный ранг, то квадратичную форму называют невырожденной, иначе — вырожденной

24. Квадратичная форма называется канонической, если все т. е.

Всякую квадратичную форму можно привести к каноническому виду с помощью линейных преобразований





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 614 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2437 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.