Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Системой m линейных уравнений с n неизвестными называется система вида




Собственные векторы и собственные значения матрицы. Характеристическое уравнение матрицы.

Опр: В-р Х наз-ся собственным в-ром квадр.м-цы А, если он не нулевой и удовлетворяет ур-е Аnx1* Хnx1=Y* Xnx1,где Y -собств.зн-е квадр.м-цы А. коллинеарный в-р.

Число Y наз-ся собственным зн-ем оператора А~ (м-цы А),соответствующим в-ру Х.

Метод вычисления собств.зн-ий и собств.в-ров. Т.к. Хnx1nx1 * Хnx1, то АХ=YEX ~ AX-YEX=0 ~ (A-YE)X=0. Если ^ = |A-YE|=0,то т.к.все ^1=0, сист.ур-ий имеет бескон.много реш.в этом сл-е (0/0).

Ур-е |A-YE|=0 – характеристическое ур-е м-цы. Из него находим Y и далее по ур-нию (A-YE)X=0 находим соотв.ненул.в-р Х.

Св-ва собств.зн-ний м-цы А: 1) Произвед-е собств-х зн-ний м-цы А равно её определителю |А|=Y1,Y2,...,Yn.

2) Число отличных от нуля собств.зн-ний м-цы А = её рангу.

3) Все собств.зн-я м-цы отличны от 0 тогда и только тогда,когда м-ца А невырожд.

4) Если Yне=0 – собств.зн-е невырожд.м-цы А,то Y-1=1/Y – собств.зн-е обрат.м-цы А-1. 5) Если Y – собств.зн-е м-цы А,то Ym -собств.зн-е м-цы Аm, где m – натур.ч-ло

8. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.

8. Система лин.ур-ний:

Аmxn*Хnx1mx1 <=> (ф.1)

(a11x1+a12x2+…+ аnxn=b1

(a21x1+a21x2+… +a2nxn=b2

(….

mx12mx2+… +аmnхn=bm

В матричной форме система имеет вид АХ=В, где

11 a12... a1n)

A= (a21 a22... a2n)

Ф.2(............);

(am1 am2.. amn)

(x1)

X= (x2)

Ф.3 (....);

(xn)

(b1)

B= (b2)

Ф.4(....);

(bm)

называются собственно матрицей системы, матрицами-столбцами переменных и свободных членов.

Решение системы:а) методом обр.м-цы. Ур-е в матричной ф-ме имеет вид АХ+В. Найти обр.м-цу. И найдём Х по ф-ле Х=А-1В,( т.е.х123.)

б) По ф-ле Крамера. Найти определитель системы ^=|A|. Если он не=0,то сист.имеет единств.реш. Далее вычислить опред-ли м-ц ^ 1, ^ 2, ^ 3,полученных их м-цы А,заменой соотв-но 1-го,2-го и 3-го ст-цов столбцом своб.членов. Далее по ф-лам Крамера:х1= ^ 1/ ^, х2= ^ 2/ ^, х3= ^ 3/ ^.

Расширенной м-цей системы наз.м-ца (А|В),полученная из м-цы сист.А добавлением к ней ст-ца членов этой системы,т.е. (А|В)=(ф.2|ф.4)

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

9. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.

Метод Гаусса – метод послед-го исключ.переменных.

Сначала(на 1-м шаге прямого хода Гаусса) из всех ур-ний,кроме 1-го исключается переменная х1. Потом (на 2 шаге) из всех ур-й,кроме первых 2-х исключается переменная х2 и т.д.,пока последнее ур-е не приобретёт вид: С * Хn=bm, если ч-ло С=0, а bm не=0,то с-ма не совместная,т.е.нет решений. Если С=0 и bm=0,т.е. 0*Хn=0,то с-ма неопределённая,т.е. имеет бескон.мн.реш.,то с-ма совместно-определённая. В этом сл-е Хn=bn/C

Полученное зн-е Хn подстав.в предпосл.ур-е,находим Хn-1 и тд.,пока не получ.все неизв-е.

Обратный ход Гаусса. Из м-цы ступенч.вида записывается ур-е. Далее,начиная с конца находим все переменные. Допустим Х4. Подставляем в верхнее и нах-м Х3 и т.д.

Метод Гаусса — Жордана исп-ся для реш.квадр.систем лин.ур-ний, нахождения обрат.м-цы, отыскания ранга м-цы. Метод явл-ся модификацией метода Гаусса. Назван в честь Гаусса и Жордана.

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

 

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i =1,…, m; b =1,…, n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Теорема Кронекера-Капелли

— критерий совместности системы линейных алгебраических уравнений.


Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.
Теорема Кронекера-Капелли применяется при исследованиях систем алгебраических уравнений (без непосредственного решения системы). В результате исследования должна быть записана эквивалентная система алгебраических уравнений с минимальным числом уравнений.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 561 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2294 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.