Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Простейшие функциональные зависимости




Лекция 3. Общие понятия и определения. Классификация функций. Предел функции. Бесконечно малые и бесконечно большие функции. Основные теоремы о бесконечно малых функциях.

Функция

При решении различных задач обычно приходится иметь дело с постоянными и переменными величинами.

Определение

Постоянной величиной называется величина, сохраняющая одно и тоже значение или вообще или в данном процессе: в последнем случае она называется параметром.

Переменной величиной называется величина, которая может принимать различные числовые значения.

Понятие функции

При изучении различных явлений обычно имеем дело с совокупностью переменных величин, которые связаны между собой так, что значения одних величин (независимые переменные) полностью определяют значения других (зависимые переменные и функции).

Определение

Переменная величина y называется функцией (однозначной) от переменной величины x, если они связаны между собой так, что каждому рассматриваемому значению x соответствует единственное вполне определенное значение величины y (сформулировал Н.И.Лобачевский).

Обозначение y=f(x) (1)

x – независимая переменная или аргумент;

y – зависимая переменная (функция);

f – характеристика функции.

Совокупность всех значений независимой переменной, для которых функция определена, называется областью определения или областью существования этой функции. Областью определения функции может быть: отрезок, полуинтервал, интервал, вся числовая ось.

Примеры:

  1. Формула площади круга

Каждому значению радиуса соответствует значение площади круга. Площадь – функция от радиуса, определенная в бесконечном интервале

2. Функция (2). Функция определена при

Для наглядного представления поведения функции строят график функции.

Определение

Графиком функции y=f(x) называется множество точек M(x,y) плоскости OXY, координаты которых связаны данной функциональной зависимостью. Или график функции – это линия, уравнением которой служит равенство, определяющее функцию.

Например, график функции (2) – полуокружность радиуса 2 с центром в начале координат.

 

 

Простейшие функциональные зависимости

Рассмотрим несколько простейших функциональных зависимостей

  1. Прямая функциональная зависимость

Определение

Две переменные величины называются прямо пропорциональными, если при изменении одной из них в некотором отношении, другая изменяется в том же соотношении.

y=kx, где k – коэффициент пропорциональности.

График функции

  1. Линейная зависимость

Определение

Две переменные величины связаны линейной зависимостью, если , где - некоторые постоянные величины.

График функции

  1. Обратная пропорциональная зависимость

Определение

Две переменные величины называются обратно пропорциональными, если при изменении одной из них в некотором отношении, другая изменяется в обратном отношении.

 

  1. Квадратичная зависимость

Квадратичная зависимость в простейшем случае имеет вид , где k – некоторая постоянная величина. График функции – парабола.

  1. Синусоидальная зависимость.

При изучении периодических явлений важную роль играет синусоидальная зависимость

- функция называется гармоникой.

A – амплитуда;

- частота;

- начальная фаза.

Функция периодическая с периодом . Значения функции в точках x и x+T, отличающихся на период, одинаковы.

Функцию можно привести к виду , где . Отсюда получаем, что графиком гармоники является деформированная синусоида с амплитудой A периодом T, сдвинутая по оси ОХ на величину

T
 

Способы задания функции

Обычно рассматривают три способа задания функции: аналитический, табличный, графический.

  1. Аналитический способ задания функции

Если функция выражена при помощи формулы, то она задана аналитически.

Например

Если функция y=f(x) задана формулой, то ее характеристика f обозначает ту совокупность действий, которую нужно в определенном порядке произвести над значением аргумента x, чтобы получить соответствующее значение функции.

Пример . Выполняется три действия над значением аргумента.

  1. Табличный способ задания функции

Этот способ устанавливает соответствие между переменными с помощью таблицы. Зная аналитическое выражение функции, можно представить эту функцию для интересующих нас значений аргумента при помощи таблицы.

Можно ли от табличного задания функции перейти к аналитическому выражению?

Заметим, что таблица дает не все значения функции, причем промежуточные значения функции могут быть найдены лишь приближенно. Это, так называемое интерполирование функции. Поэтому, в общем случае найти точное аналитическое выражение функции по табличным данным нельзя. Однако всегда можно построить формулу, и при том не одну, которая для значений аргумента, имеющихся в таблице, будет давать соответствующие табличные значения функции. Такого рода формула называется интерполяционной.

  1. Графический способ задания функции

Аналитический и табличный способы не дают наглядного представления о функции.

Этого недостатка лишен графический способ задания функции y=f(x), когда соответствие между аргументом x и функцией y устанавливается с помощью графика.

Понятие неявной функции

Функция называется явной, если она задана формулой, правая часть которой не содержит зависимой переменной.

Функция y от аргумента x называется неявной, если она задана уравнением

F(x,y)=0 (1) неразрешенным относительно зависимой переменной.

Пример.

Понятие обратной функции

Пусть задана функция y=f(x) (1). Задавая значения аргумента х, получаем значения функции y.

Можно, считая y аргументом, а х – функцией, задавать значения y и получать значения x. В таком случае уравнение (1) будет определять x, как неявную функцию от y. Эта последняя функция называется обратной по отношению к данной функции y.

Предполагая, что уравнение (1) разрешено относительно x, получаем явное выражение обратной функции

(2), где функция для всех допустимых значений y удовлетворяет условию

Пример

Замечание

Обратная функция однозначной функции может быть многозначной, то есть данному значению y может соответствовать несколько значений обратной функции .

Например, тригонометрические функции и обратные тригонометрические функции. Или

- двузначная.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 13096 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2255 - | 2025 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.