В ферропорошковой муфте барабанного типа (рис. 6.5) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается электромагнит 4, связанный с ведомым валом 6. Обмотка 5 электромагнита питается через контактные кольца (на рисунке не показаны). Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбонильное железо) с зернами размером от 4—6 до 20—50 мкм, смешанными с сухим (тальк, графит) или жидким (трансформаторное, кремнийорганические масла) наполнителем. При обесточенной обмотке и вращении ведущей части (барабана) электромагнит и ведомый вал остаются неподвижными, поскольку ферромагнитные зерна наполнителя свободно перемещаются относительно друг друга. Определенное трение между барабаном и электромагнитом существует, но оно относительно невелико.
При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды, находящейся в барабане, резко возрастает. Увеличивается сила трения между барабаном и электромагнитом. На ведомом валу появляется вращающий момент.
При определенном значении тока возбуждения ферромагнитный порошок и наполнитель полностью затвердевают. Барабан и электромагнит становятся жестко связанными. Можно рассматривать передаваемый момент как момент от силы трения, действующей между порошком и внутренней цилиндрической поверхностью барабана.
Рис. 6.5. Электромагнитная ферропорошковая муфта барабанного типа
Благодаря тому что зазор между барабаном и электромагнитом заполнен ферромагнитной смесью, его магнитная проводимость очень велика, что позволяет уменьшить необходимую МДС обмотки и увеличить коэффициент управления муфты, равный отношению передаваемой мощности к мощности управления (мощности электромагнита).
На зерна ферромагнитного порошка кроме электромагнитных сил Рэм действуют центробежные силы Рц, пропорциональные квадрату угловой скорости. Для оценки влияния центробежных сил вводится отношение £ц = Рц/РЭм. Это отношение увеличивается с ростом диаметра муфты, угловой скорости и уменьшается с ростом индукции в зазоре. Даже при В=1,8Тл отношение PJP3K достигает 40%, если частота вращения равна 3000 об/мин [14.1]. При определенном значении частоты вращения отношение Рп/РЭм приближается к 100 % и муфта теряет управление. Поэтому ферропорошковые муфты не применяют при скоростях более 3000 об/мин.
По сравнению с электромагнитными муфтами трения ферропорошковые муфты имеют значительно большее быстродействие (примерно в 10 раз) благодаря отсутствию якоря. Изменение момента во времени для линейной части характеристики М{1) определяется законом роста тока.
Поэтому в схемах автоматики порошковая муфта является инерционным звеном первого порядка. Большим преимуществом ферропорошковой муфты является отсутствие быстроизнашивающихся дисков трения.
Ферропорошковые муфты целесообразно применять там, где требуются высокое быстродействе, большая частота включения и плавное регулирование скорости ведомого вала. Недостатком ферропорошковых муфт является меньшая передаваемая мощность при одинаковых габаритных размерах с муфтой трения.
ГИСТЕРЕЗИСНЫЕ МУФТЫ
Возможны два варианта исполнения гистерезисных муфт: в первом — магнитное поле индуктора создается обмоткой, во втором — постоянными магнитами. Недостатком первого варианта является наличие контактной системы для передачи тока в индуктор, достоинством — возможность электрического управления муфтой. Муфты с постоянными магнитами (магнитогистерезисные) обладают высокой надежностью. Однако регулирование передаваемого момента в них затруднено.
В магнитогистерезисной муфте (рис. 6.6) постоянные магниты 1 с полюсными наконечниками 2 укреплены в магнитопроводе 3 индуктора, связанного с ведущим валом. На ось ведомого вала насажен ротор, состоящий из втулки 5 из немагнитного или магнитомягкого материала и колец 4 активного слоя. Кольца активного слоя изготовлены из материала с довольно широкой петлей гистерезиса, имею щей высокие значения остаточной индукции и коэрцитивной силы. Шихтованная структура активного слоя позволяет уменьшить вихревые токи и асинхронный вращающий момент.
Пусть ротор заторможен, а индуктор вращается приводным двигателем с угловой скоростью . Под действием вращающегося магнитного поля индуктора в активном слое появляются потери на гистерезис от перемагничивания. Потери за один цикл перемагничивания определяются максимальным значением индукции в активном слое ротора.
Преимущество гистерезисной муфты заключается в постоянстве передаваемого момента. Если нагрузочный момент М нрезко возрастает (неполадки, поломки механизма), то максимальный момент, передаваемый на приводной двигатель, ограничен М ги гистерезисная муфта защищает двигатель от перегрузки. Постоянство момента муфты обеспечивает быстрый разгон нагрузки.
В ряде схем автоматики необходима быстрая остановка привода. В этих случаях применяются тормоза на базе гистерезисной муфты. Ведомая часть муфты делается неподвижной, а ведущая соединяется с приводным двигателем. При торможении двигатель отключается и включается муфта. Постоянный тормозной момент муфты обеспечивает быструю остановку привода.
Гистерезисные муфты широко применяются для передачи момента в агрессивную среду, отделенную от окружающей среды металлической немагнитной оболочкой и находящуюся под высоким давлением. В этом случае применяются муфты с аксиальным рабочим зазором. Ведущая часть с индуктором отделена немагнитной стенкой от ведомой части с активным слоем в виде колец.
Рис. 6.6. Магнитогистерезисная муфта с радиальным рабочим зазором