Температура. Поскольку реакция гидролиза эндотермическая, то повышение температуры смещает равновесие в системе вправо, степень гидролиза возрастает.
Концентрация продуктов гидролиза. В соответствии с принципом Ле Шателье, повышение концентрации ионов водорода (для примера 1) приведет к смещению равновесия влево. Степень гидролиза будет уменьшаться. Также будет влиять увеличение концентрации гидроксид-ионов для реакции рассмотренной в примере 2.
Концентрация соли. Рассмотрение этого фактора приводит к парадоксальному выводу: равновесие в системе смещается вправо, в соответствии с принципом Ле Шателье, но степень гидролиза уменьшается. Понять это помогает константа равновесия. Да, при добавлении соли, то есть фосфат-ионов (пример 2), равновесие будет смещаться вправо, концентрация гидрофосфат и гидроксид-ионов будет возрастать. Но из рассмотрения константы равновесия этой реакции ясно, что для того, чтобы увеличить концентрацию гидроксид-ионов вдвое, нам надо концентрацию фосфат-ионов увеличить в 4 раза! Ведь значение константы должно быть неизменным. А это значит, что степень гидролиза, под которой можно понимать отношение [OH–] / [PO43–], уменьшится вдвое.
Разбавление. Этот фактор означает одновременное уменьшение концентрации всех частиц в растворе (не считая воды). В соответствии с принципом Ле Шателье, такое воздействие приводит к смещению равновесия в сторону реакции, идущей с увеличением числа частиц. Реакция гидролиза протекает (без учета воды!) с увеличением числа частиц. Следовательно при разбавлении равновесие смещается в сторону протекания этой реакции, вправо, степень гидролиза возрастает. К этому же выводу придем из рассмотрения константы гидролиза.
Коллоидные растворы (золи) — ультрамикрогетерогенные дисперсные системы, размер частиц которых лежит в пределе от 1 до 100 нм (10 9 10 7см).
Способы получения. В основе химических методов образования коллоидных частиц часто лежит процесс полимеризации ионов и молекул за счет мости-ковых связей (гидроксильных, водородных, кислородных, фторидных и т. д.). Поэтому для управления процессом коллоидообразования важно знать закономерности процесса укрупнения частиц за счет химических «мостиков», в частности процессов оляции, оксоляции и др.
Механическое диспергирование
Большое значение имеют механические способы получения коллоидов. В громадных масштабах в промышленности осуществляется диспергирование твердых веществ до «коллоидных» размеров путем раздавливания, истирания и др. В природе этот эффект производят силы выветривания, процессы выщелачивания горных пород, а также движение ледников, действие приливов, отливов, штормов, бурь и др. В промышленности мелкий, «коллоидный», помол получают с помощью различного рода дробилок, жерновов, шаровых мельниц. Шаровая мельница представляет собой вращающийся полый цилиндр со свободно перемещающимися стальными или фарфоровыми шарами. С помощью шаровых мельниц, в частности, проводят размол цементного клинкера.
Частицы коллоидных размеров могут быть получены, кроме того, с помощью ультразвука, путем распыления металлов в вольтовой дуге, конденсацией в особых условиях паров высококипящих веществ, например металлов.
Применение коллоидов
Многие важнейшие химические - производства, такие, как цементная, нефтяная, бумажная, фармацевтическая промышленность, металлургия (гидрометаллургия и пирометаллургия), имеют дело прежде всего с коллоидными системами. С коллоидным состоянием вещества связано производство искусственных волокон, резины и др.
Уже говорилось о преобладании коллоидных систем (а не истинных растворов), в частности жидких коллоидных растворов, в животных и растительных организмах, минералах, почвах. Очень многие переходные и основные состояния неорганических соединений — также коллоидные.
Строение мицеллы
Мицеллой лиофобной системы называется гетерогенная микросистема, которая состоит из микрокристалла дисперсной фазы, окруженного сольватированными ионами стабилизатора.
Потенциалопределяющими называются ионы, адсорбирующиеся на поверхности частички твердой фазы (агрегата) и придающие ей заряд. Агрегат вместе с потенциалопределяющими ионами составляет ядро мицеллы.
Противоионы – ионы, группирующиеся вблизи ядра мицеллы.
Расположение противоионов в дисперсионной среде определяется двумя противоположными факторами: тепловым движением (диффузией) и электростатическим притяжением.
Противоионы, входящие в состав плотного адсорбционного слоя, называются «связанными» и вместе с ядром составляют коллоидную частицу, или гранулу. Коллоидная частица (гранула) имеет заряд, знак которого обусловлен знаком заряда потенциалопределяющих ионов.
Противоионы, образущие диффузный слой, – «подвижные», или «свободные».
Коллоидная частица с окружающим ее диффузным слоем сольватированных про-тивоионов составляют мицеллу. В отличие от коллоидной частицы мицелла электронейтральна и не имеет строго определенных размеров.
В мицелле с ионным стабилизатором на границе раздела фаз имеется ДЭС, возникает разность потенциалов между дисперсной фазой и дисперсионной средой – термодинамический потенциал ф (межфазный), который определяется свойствами данной дисперсной системы, а также зарядом и концентрацией потенциалопределяющих ионов, адсорбированных на твердой фазе.
Перемещение заряженных коллоидных частиц в неподвижной жидкости к одному из электродов под действием внешнего электрического поля называется электрофорезом.
Поверхность, по которой происходит перемещение, называется поверхностью скольжения. Величина скачка потенциала на границе фаз, находящихся в движении относительно друг друга при электрофорезе и в броуновском движении, т. е. на поверхности скольжения, называется электрокинетическим или ζ-потенциалом (дзета-потенциал).
Агрегатная устойчивость золей не всегда обусловлена наличием специально введенного стабилизатора. Напр., в гидрозоле SiO2 (и нек-рых др.оксидов) двойной электрич. слой м. б. образован ионогенными продуктами хим. взаимодействия пов-сти агрегата, состоящего из частиц дисперсной фазы, с водой. При коагуляции или повышении концентрации (увеличении степени объемного заполнения системы частицами дисперсной фазы) золи превращаются в гели. При этом возможно образование периодических коллоидных структур (см. Структурообразование). Лиофильными золями являются мицеллярные р-ры разл. типов, мн. водные р-ры биополимеров, лиофобными - органо-и гидрозоли металлов, синтетич. латексы.Расплавы, содержащие коллоидно-дисперсную фазу, наз. пирозолями. При охлаждении пирозолей в результате застекловывания иликристаллизации дисперсионной среды возникают твердые золи. К ним относятся, напр., нек-рые минералы, в т. ч. драгоценные и полудрагоценные камни, цветные стекла (напр., рубиновые стекла), эмали, металлич. сплавы, дисперсноупрочненные материалы, стареющие сплавы на основе Al, Fe, Сu и др.
Кинетическая устойчивость. Частицы, находящиеся во взвешенном состоянии в газах, истинных растворах или коллоидных системах (в золях, суспензиях, эмульсиях), испытывают влияние двух противоположных процессов – осаждения под действием силы тяжести (седиментации) и диффузии. В результате этого через некоторый промежуток времени в системе устанавливается седиментационно-диффузионное равновесие, которое выражается в том, чтоконцентрация частиц в объеме системы падает в направлении от нижних слоев к верхним, если дисперсная фаза более плотная, чемдисперсионная среда, и, наоборот, от верхних слоев к нижним, если дисперсная фаза менее плотная. Предполагается, что это распределение подчиняется закону распределения Больцмана:
, (2.3.1.)
где n0 , nh - концентрация частиц на нулевом уровне и на высоте h от него, Uh - потенциальная энергия частиц на высоте h.
Потенциальную энергию частиц можно выразить как
, (2.3.2)
где m – масса частицы; r – ее радиус; Dr=r-r0, r, r0 - плотность вещества дисперсной фазы и дисперсионной среды; g- ускорение силы тяжести.
Подставляя (2.3.2) в уравнение (2.3.1), получаем
, (2.3.3)
или
. (2.3.4)
Уравнение (2.3.4) является математической формулировкой гипсометрического закона Лапласа. Для количественной характеристики кинетической устойчивости принята высота h1/2, на которой концентрация частиц изменится ровно в два раза, т.е. n1/2= n0/2.
Проверка применимости уравнения (2.3.4) к коллоидным системам была проведена Перреном, который экспериментально определял h1/2 и при известных значениях размеров частиц и их плотности рассчитывал число Авогадро и наблюдал хорошее совпадение с теоретическим значением.
Из уравнения (2.3.4) следует, что основными параметрами, определяющими кинетическую устойчивость дисперсных систем, является плотностьдисперсной фазы и размер частиц. Чем больше Dr, тем менее кинетически устойчива система и тем более она будет склонна к расслоению на две макрофазы. Увеличение размера частиц или капель эмульсии также способствует расслоению.
Коагуляция (от лат. coagulatio — свертывание, сгущение), также старение — объединение мелких частиц дисперсных систем в более крупные под влиянием сил сцепления с образованием коагуляционных структур.
Коагуляция — физико-химический процесс слипания коллоидных частиц.
Коагуляция ведёт к выпадению из коллоидного раствора хлопьевидного осадка или к застудневанию. Коагуляция — естественный, самопроизвольный процесс расслаивания коллоидного раствора на твёрдую фазу и дисперсионную среду. Таким образом дисперсная система стремится достигнуть состояния минимальной энергии.
Седимента́ция (осаждение) — оседание частиц дисперсной фазы в жидкости или газе под действием гравитационного поля или центробежных сил.
Скорость седиментации зависит от массы, размера, формы и плотности вещества частицы, вязкости и плотности среды, а также от ускорения силы тяжести и действующих на частиц центробежных сил.
В поле гравитационных сил седиментируют частицы грубодисперсных систем; в поле центробежных сил возможна седиментация коллоидных частиц и макромолекул (см.центрифугирование).
Седиментацию используют в промышленности при обогащении полезных ископаемых, различных продуктов химической и нефтехимической технологии, при водоочистке и др.
Седиментация в центрифугах и ультрацентрифугах, а также в гравитационном поле лежит в основе седиментационного анализа.
Окисли́тельно-восстанови́тельные реа́кции, ОВР, редокс (от англ. redox ← red uction- ox idation — окисление-восстановление) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.