Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Модусы категорического силлогизма. Модусами силлогизманазываются разновидности фигур, отличающихся характером посылок и заключения.




 

Модусами силлогизма называются разновидности фигур, отличающихся характером посылок и заключения.

Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 х 64 = 256 модусов.

Неправильные. Задача логической теории силлогизма - систематизировать правильные силлогизмы, указать их отличительные черты.

Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые называния равильных модусов первых двух фигур: 1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront; 2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros; 3-я фигура: Darapti, Datisi, Felapton, Fericon, Disamis, Bocardo; 4-я фигура: Bramantip, Camenes, Fesapo, Fresison, Dimaris, Camenos. В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP), меньшей - общеутвердительное (SaP) и заключением - общеотрицательное высказывание (SeP).

Из 24 правильных модусов силлогизма 5 являются ослабленными: заключениями в них являются частноутвердительные или частоотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. Модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остается 19 правильных модусов силлогизма.

Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объемами имен. Возьмем, для примера, силлогизм: Все металлы (М) ковки (Р). Железо (S) - металл (М). Железо (S) ковко (Р).

 

 
 

 


Отношения между тремя терминами этого силлогизма (модус Barbara) представляется тремя концентрическими кругами. Эта схема интерпретируется так: если М (металлы) входят в объем Р (ковких тел), то с необходимостью S (железо) войдет объем Р (ковких тел), что и утверждается в заключении "Железо ковко".

Другой пример силлогизма:

Все рыбы (Р) не имеют перьев (М).

У всех птиц (S) есть перья (М).

Ни одна птица (S) не является рыбой (Р).

       
   

 

 


Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если S (птицы) входят в объем М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.

Пример неправильного силлогизма: Все тигры (М) - млекопитающие (Р). Все тигры (М) - хищники (S). Все хищники (S) - млекопитающие (Р).

 

       
 
   
 

 


Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объем Р (млекопитающие) и все М входят также в объем S (хищники).

Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объемами Р и S может быть двояким. Охватывая М, объем S может полностью входить в объем Р или объем S может лишь пересекаться с объемом Р. В первом случае можно было бы сделать общее заключение "Все хищники - млекопитающие", но во втором случае правомерно только частное заключение "Некоторые хищники млекопитающие". Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержатся. Значит, мы не вправе делать заключение. Силлогизм не является правильным.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 380 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2695 - | 2633 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.