Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгебраическая сумма падений напряжения на потребителях замкнутого контура равна алгебраической сумме ЭДС источников, содержащихся в нем




При суммировании в левой части положительными принимают падения напряжения на тех потребителях, в которых выбранное положительное направление тока совпадает с направлением обхода контура; в правой части положительными принимают ЭДС источников, являющихся содействующими в смысле выбранного направления обхода контура (потенциал на них возрастает).

Уравнения, записанные по I и II 3аконам Кирхгофа, составляют систему, порядок которой равняется числу ветвей в цепи.

Метод контурных токов

Применение метода позволяет уменьшить общее количество уравнений системы до числа независимых контуров p.

Расчет электрических цепей методом контурных токов осуществляется в соответствии со следующим алгоритмом:

В произвольно выбранной совокупности независимых контуров обозначить контурные токи, направление которых выбирается произвольно.

Для определения контурных токов составить систему уравнений, записываемую в виде матричного уравнения вида

,

где -– матрица комплексных сопротивлений размерностью (p ´ p), в которой:

– собственное комплексное сопротивление, определяемое как сумма сопротивлений ветвей, входящих в контур;

– общее комплексное сопротивление i и j контуров; определяется как сопротивление ветви (ветвей), общих для i и j контуров. Общее сопротивление отрицательно, когда контурные токи и , протекающие в общей ветви (ветвях), направлены противоположно;

– матрица-столбец контурных токов;

– матрица-столбец контурных ЭДС представляет собой алгебраическую сумму ЭДС, включенных в ветви, образующие данный контур. Правило знаков аналогично II закону Кирхгофа.

Решить составленную систему уравнений относительно неизвестных токов.

Выразить токи всех ветвей как сумму контурных токов, в них протекающих, взятых со знаком плюс, если направления тока ветви и контурного тока совпадают.

П р и м е ч а н и е. 3адача расчета данным методом упрощается, если в цепи имеются h источников тока. Если выбрать совокупность независимых контуров таким образом, что каждая ветвь с источником тока войдет только в один контур, число совместно решаемых уравнений системы сократится на h. При этом h контурных токов будут приняты равными задающему току J соответствующего источника тока, вошедшего в данный контур.

 

Баланс активных и реактивных мощностей

При расчете цепей гармонического тока символическим методом следует рассматривать комплексную мощность

где – активная мощность;

реактивная мощность.

Баланс мощностей

Или

,

где – сопряженный комплекс тока k -й ветви;

– действующее значение тока k -й ветви;

– активная мощность потребителей;

– реактивная мощность потребителей.

Выражение в левой части равенства представляет собой суммарную комплексную мощность источников. Правило знаков аналогично изложенному в п. 3.4 (контрольная работа № 1).

Метод узловых потенциалов

Применение данного расчетного метода позволяет уменьшить количество уравнений системы до (n – 1), где n – число узлов электрической цепи. Порядок расчета данным методом следующий:

1. Потенциал одного из узлов (любого) условно принять равным нулю. Этот узел называют опорным.

2. Для расчета неизвестных (n – 1) потенциалов составить систему уравнений, записываемую в виде матричного уравнения вида

,

где – квадратная матрица комплексных проводимостей, в которой:

– собственная комплексная проводимость, определяемая как сумма проводимостей ветвей, сходящихся в узле;

– общая комплексная проводимость ветвей, соединяющих i и j узлы, определяемая как проводимость ветви, соединяющей i и j узлы. В случае, если между i и j узлами подключены несколько ветвей (не имеющих промежуточных узлов), общая проводимость определяется как сумма проводимостей ветвей, соединяющих узлы. Общая проводимость в системе уравнений всегда берется со знаком минус.

В н и м а н и е! Проводимость ветви, содержащей источник тока, равна 0.

Д о п о л н е н и е. Для цепей, в ветвях которых подключены только идеальные источники напряжения (R ветви = 0), расчет может быть упрощен при выборе опорного узла на выводах этих ветвей. Тогда потенциал одного из узлов становится известным и равным ЭДС идеального источника напряжения. Таким образом, количество совместно рассматриваемых уравнений системы сокращается. Однако следует отметить, что оставшиеся уравнения остаются неизменными, т.е. содержат слагаемые, являющиеся произведением известного потенциала узла и соответствующей проводимости.

– матрица-столбец потенциалов;

– матрица-столбец узловых токов, определяемых по следующей формуле:

,





Поделиться с друзьями:


Дата добавления: 2016-10-27; Мы поможем в написании ваших работ!; просмотров: 1120 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.047 с.