Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные уравнения строительной механики




Математическая сторона основной задачи строительной механики основана на зависимостях, полученных в сопромате. Напомним их на примере напряженно-деформированного состояния элемента рамы, для которого – в отличие от балки – поперечный изгиб сопровождается дополнительным растяжением или сжатием.

Пусть такой элемент длиной dx расположен в локальной системе координат Oxy, где ось Ox направлена по оси стержня, и загружен распределенной нагрузкой интенсивностью qx и qy вдоль Ox и Oy соответственно (рис. 1.20).

Напряженно-деформированное состояние стержня определяется девятью компонентами:

– внутренними усилиями (M, Q, N,);

– перемещениями (u, v, q);

– деформациями (κ, g, e).

Уравнения для определения этих функций можно разделить на три группы.

Статические уравнения – связывают внутренние усилия (рис. 1.20, б) с заданной нагрузкой:

dN / dx = – qx; ü

dQ / dx = qy; ý (1.10)

dM / dx = Q. þ

Геометрические уравнения – выражают деформации через перемещения, показанные на рис. 1.20, в, г:

 

κ = d q/ dx; ü

g = q - dv / dx; ý (1.11)

e = du / dx. þ

 

Физические уравнения – представляют собой зависимости между внутренними усилиями и деформациями:

 

κ = M / EJ; ü

g = m Q / GF; ý (1.12)

e = N / EF; þ

 

где E – модуль Юнга;

G – модуль сдвига;

F – площадь поперечного сечения стержня;

J – момент его инерции;

m – коэффициент, учитывающий неравномерность распределения касательных напряжений в поперечном сечении стержня.

 

 

Q > 0
γ>0
Q + dQ
M > 0
N + dN
qx > 0
qy > 0
u >0
θ>0
N > 0
M + dM
θ+ d θ > 0

 

Рис.1.20

 

Отметим, что выражения EJ и EF в (1.12) называются жесткостями стержня при изгибе и растяжении (сжатии) соответственно.

При решении системы уравнений (1.10) – (1.12) возможны два варианта:

1) внутренние усилия M, Q, N удается найти из системы уравнений (1.10), не обращаясь к остальным уравнениям – это СОС;

2) внутренние усилия можно найти только путем совместного решения всех девяти уравнений – это СНС.

В последнем случае при решении этих уравнений возможны два подхода:

– в качестве основных неизвестных выбирают усилия M, Q, N, выражая все остальные через них – это решение в форме метода сил;

– в качестве основных неизвестных выбирают перемещения u, v, q – это решение в форме метода перемещений.

Системы, описываемые линейными уравнениями (1.10) - (1.12), называются линейно-деформируемыми. Для них справедлив принцип суперпозиции, в соответствии с которым:

внутренние усилия, перемещения и деформации от заданной нагрузки (или иного воздействия) можно найти как сумму соответствующих величин от каждой нагрузки в отдельности.

 

Примечания

1. Первое из статических уравнений (1.10) получается из условия равновесия рассматриваемого элемента рамы. Полагая в его пределах qx = const, и составляя уравнение S X = 0, получим:

N + qx × dx + (N + dN) = 0,

 

откуда и следует искомая зависимость. Два других уравнения из (1.10) – это дифференциальные зависимости Журавского.

2. Первое из физических уравнений (1.12) представляет собой дифференциальное уравнение изогнутой оси балки:

 

κ = d q/ dx = d 2 v / dx 2 = M / EJ.

 

Второе уравнение в предпосылке равномерного распределения касательных напряжений в поперечном сечении стержня (m =1) выражает закон Гука при сдвиге:

 

t = Q / F = G g.

 

При этом мы не уточняем смысл коэффициента m по причине, которая будет указана в § 3.5. Последнее из физических уравнений (1.12) – это закон Гука при ЦРС:

 

s = N / F = E ×e.

 

3. В дальнейшем мы будет по-прежнему применять обозначение Oxy для глобальной системы координат, связанной с конструкцией в целом.






Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1985 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.