Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Моменты инерции однородных тел




Однородный стержень

Имеем однородный стержень длиной и массой . Направим по стержню ось . Вычислим момент инерции стержня относительно оси , проходящей перпендикулярно стержню через его конец:

. (146)

Момент инерции стержня относительно оси , проходящей через центр масс и параллельной оси , определяется по теореме Штейнера:

. (147)

Прямоугольная пластина

Прямоугольная тонкая пластина имеет размеры и и массу . Выберем точку на середине стороны длиной . Оси и расположим в плоскости пластины, параллельно сторонам длиной и соответственно, а ось направим перпендикулярно плоскости.

Моменты инерции пластины относительно осей координат равны:

, , . (148)

Сплошной диск

Имеем тонкий однородный диск радиусом и массой . Оси координат и расположены в плоскости диска. Момент его инерции относительно центра диска совпадает с моментом инерции относительно координатной оси , перпендикулярной плоскости диска.

, . (149)

Тонкое кольцо (круглое колесо)

Имеем тонкое кольцо радиусом и массой , распределенной по его ободу. Оси координат и расположим в плоскости кольца. Момент инерции относительно его центра совпадает с моментом инерции относительно координатной оси , перпендикулярной плоскости кольца.

, . (150)

Круглый цилиндр

Для круглого однородного цилиндра, масса которого , радиус и длина , его моменты инерции относительно продольной оси симметрии и относительно его поперечной оси симметрии равны:

, . (151)

Шар

Пусть масса шара , радиус . Моменты инерции шара относительно осей координат и центра шара равны:

. (152)

Теоремы динамики

Внешними силами механической системы называются силы, с которыми действуют на точки системы тела и точки, не входящие в рассматриваемую систему.

Внутренними силами механической системы называют силы взаимодействия между точками рассматриваемой системы.

Внешнюю силу, приложенную к какой-либо точке системы, обозначим , а внутреннюю – . Внутренние и внешние силы могут включать в себя как активные силы, так и силы реакций связей.

Главный вектор всех внутренних сил системы и главный момент этих сил относительно произвольной точки равны нулю при любом состоянии системы, т. е. при ее равновесии и при произвольном движении.

, . (153)

Если рассмотреть какие-либо две произвольные точки системы, например и , то для них , так как силы действия и противодействия всегда равны друг другу по модулю, противоположны по направлению и действуют вдоль одной прямой линии, соединяющей взаимодействующие точки. Главный вектор внутренних сил состоит из векторной суммы таких сил действия и противодействия, так как вся система состоит из пар взаимодействующих точек. Следовательно, он равен нулю. Так как обе силы имеют одинаковые плечи и противоположные направления векторных моментов, их главный вектор равен нулю. Главный момент внутренних сил состоит из векторной суммы таких выражений, равных нулю.

Пусть даны внешние и внутренние силы, действующие на систему, состоящую из точек. Если к каждой точке системы приложить равнодействующую силу внешних сил и равнодействующую силу всех внутренних сил то для любой -й точки системы можно составить дифференциальное уравнение движения, например, в векторной форме, т. е.

, (). (154)

Систему дифференциальных уравнений (154) называют дифференциальными уравнениями движения механической системы в векторной форме. Если спроецировать векторные дифференциальные уравнения (154) на прямоугольные декартовы оси координат, то получим систему дифференциальных уравнений, описывающих движение точек механической системы.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1133 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.