Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Никель, кобальт и их сплавы




Ни́кель — элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель (CAS-номер: 7440-02-0) — это пластичный ковкий переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой защитной плёнкой оксида. Химически малоактивен. Название своё этот элемент получил от злого духа гор, который, согласно немецкой мифологии, подбрасывал искателям меди минерал, похожий на медную руду; ср. нем. Nickel - озорник.

Физические свойства

Металлический никель имеет серебристый цвет с желтоватым оттенком, очень твёрд, вязкий и ковкий, хорошо полируется, притягивается магнитом, проявляя магнитные свойства при температурах ниже 340 °C.

Химические свойства

Атомы никеля имеют внешнюю электронную конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления Ni(II).

Никель образует соединения со степенью окисления +2 и +3. При этом никель со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем.

Никель характеризуется высокой коррозионной стойкостью — устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию — образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Никель активно растворяется в азотной кислоте.

С оксидом углерода CO никель легко образует летучий и весьма ядовитый карбонил Ni(CO)4.

Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе).

Никель горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат. Растворы окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида NiS (черный), Ni2S3 (желтовато-бронзовый) и Ni3S4 (черный). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля

Ко́бальт — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 27. Обозначается символом Co (лат. Cobaltum). Простое вещество кобальт (CAS-номер: 7440-48-4) — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом. Существует в двух кристаллических модификациях: α-Co с гексагональной плотноупакованной решёткой, β-Co с кубической гранецентрированной решёткой, температура перехода α↔β 427 °C.

Кобальт (Co) (Cobaltum) - химический элемент VIII группы в периодической системе химических элементов с атомным номером 27, твёрдый вязкий блестящий голубовато-серый металл, относится к тяжелым металлам. Плотность кобальта равна 8,9 г/см3, tпл.=1493 °C, tкип.=2957 °C. В земной коре содержание кобальта равно 4·10-3% по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит СоAs2 и другие. В морской воде приблизительно (1-7)·10-10% кобальта.

История открытия кобальта

Название металла "Кобальт" тесно связано с саксонскими рудниками, а точнее с подземным гномом Кобольдом, который там обитал по мнению саксонцев. Дело в том, что не всегда руда, принимаемая тогда за серебряную, давала при выплавке непосредственно драгоценный металл. Данное явление, как раз, и присывали к злым деяниям маленького гнома Кобольда. Руда, которая не давала серебра, но была по внешним признакам очень похожа на серебряную, получила название "кобольд". Скорее всего это были содержащие мышьяк кобальтовые минералы — кобальтин CoAsS, или сульфиды кобальта скуттерудит, сафлорит или смальтин.
В 1735 году шведский химик Георг Брандт выделил из данной руды серый со слабым розоватым оттенком неизвестный металл, который получил название "кобольд" или "Кобальт". Брандт выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет

Применение кобальта

Кобальт в виде порошка используют в основном в качестве добавки к сталям. При этом повышается жаропрочность стали, улучшаются ее механические свойства (твердость и износоустойчивость при повышенных температурах). Кобальт входит в состав твердых сплавов, из которых изготовляется быстрорежущий инструмент. Один из основных компонентов твердого сплава - карбид вольфрама или титана - спекается в смеси с порошком металлического кобальта. Именно кобальт улучшает вязкость сплава и уменьшает его чувствительность к толчкам и ударам. Так, например, резец из суперкобальтовой стали (18% кобальт) оказался самым износоустойчивым и с лучшими режущими свойствами по сравнению с резцами из ванадиевой стали (0% кобальт) и кобальтовой стали (6% кобальт). Также кобальтовый сплав может использоваться для защиты от износа поверхностей деталей, подверженных большим нагрузкам. Твердый сплав способен увеличить срок службы стальной детали в 4-8 раз.
Также стоит отметить магнитные свойства кобальта. Данный металл способен сохранять данные свойства после однократного намагничивания. Магниты должы иметь высокое сопротивление к размагничиванию, быть устойчивыми по отношению к температуре и вибрациям, легко поддаваться механической обработке. Добавление кобальта в стали позволяет им сохранять магнитные свойства при высоких температурах и вибрациях, а также увеличивает сопротивление размагничиванию. Так, например, японская сталь, содержащая до 60% кобальта, имеет большую коэрцитивную силу (сопротивление размагничиванию) и всего лишь на 2-3,5% теряет магнитные свойства при вибрациях. Магнитные сплавы на основе кобальта применяют при производстве сердечников электромоторов, трансформаторов и в других электротехнических устройствах.
Стоит отметить, что кобальт также нашел применение в авиационной и космической промышленности. Кобальтовые сплавы постепенно начинают конкурировать с никелевыми, которые хорошо зарекомендовали себя и давно используются в данной отрасли промышленности. Сплавы, содержащие кобальт, используются в двигателях, где достигается достаточно высокая температура, в конструкциях авиационных турбин. Никелевые сплавы при высоких температурах теряют свою прочность (при температурах от 1038°С) и тем самым проигрывают кобальтовым.
В последнее время кобальт и его сплавы стали применяться при изготовлении ферритов, в производстве «печатных схем» в радиотехнической промышленности, при изготовлении квантовых генераторов и усилителей. Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов. Силицид кобальта отличный термоэлектрический материал и позволяет производить термоэлектрогенераторы с высоким КПД. Соединения кобальта, введенные в стекла при их варке, обеспечивают красивый синий (кобальтовый) цвет стеклянных изделий.

Сплав кобальт-никель благодаря высокой твердости, износостойкости, коррозионной стойкости, а также специальным магнитным свойствам широко применяется во многих отраслях промышленности: радиоэлектронике - в качестве магнитотвердого материала, машиностроении - для изготовления деталей пресс-форм и др.

В настоящее время разработано значительное количество электролитов для получения покрытий сплавом кобальт-никель, однако большинство электролитов по ряду технологических показателей (рабочая плотность тока, выход по току, рассеивающая способность, физико-механические свойства получаемых покрытий и др.) не соответствуют современным требованиям производства.

Для повышения производительности процесса и улучшения качества покрытий на гальваническом производстве применяют механическое перемешивание электролита. Однако при таком способе скорость движения ионов у поверхности катода по законам гидродинамики стремится к нулю, что приводит к незначительному снижению диффузионных ограничений, т. е. эффективность такого перемешивания незначительна. Для достижения высокой эффективности перемешивания электролита вблизи катода предлагается использовать вибрацию катода и наложение на электролит магнитного поля.

В связи с этим наибольший интерес представляют методы получения покрытий при вибрации катода, а также при наложении на электролит магнитного поля. Применение таких методов позволяет повысить скорость осаждения, за счет увеличения рабочей плотности тока, а также существенно улучшить качество и физико-механические свойства покрытий.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 4326 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.