Изучая математическую статистику на 1 курсе, Вы познакомились с оценкой значимости различия средних в выборках. По терминологии математической статистики, процедуры, выполняемые при таких оценках, называются проверкой статистических гипотез.
Возможно, Вы вспомните, что:
во-первых, всегда делалось допущение о нормальном распределении (или близком к нормальному) изучаемых случайных величин (СВ) и равенстве их дисперсий;
во-вторых, все СВ, с которыми Вы имели дело ранее, являлись количественными признаками объектов наблюдения (число килограммов, число сантиметров и др.);
в-третьих, большинство встречавшихся Вам ранее СВ являлись непрерывными величинами, то есть их значения могли сколь угодно мало отличаться друг от друга;
и, наконец, все СВ были представлены абсолютными значениями (килограммы, сантиметры и др.).
При соблюдении перечисленных условий для оценки значимости различий должны применяться параметрические критерии, каким и является t-критерий Стьюдента, знакомый Вам по ручным расчетам и работой с программой Excel. Параметрическим он называется потому, что для его корректного использования необходимо учитывать параметры распределения, сравниваемых СВ, а именно:
- распределение СВ должно быть достаточно нормальным;
- дисперсии должны быть достаточно одинаковыми.
Однако значительная часть СВ, встречающихся в сфере медицины и здравоохранения не отвечает выше перечисленным условиям:
во-первых, известно много параметров организма и процессов, не соответствующих закону нормального распределения.
В качестве примеров можно привести индивидуальный уровень двигательной активности в популяции человека и животных, концентрацию некоторых гормонов в крови, количество принимаемых медикаментов населением (как правило, люди либо не принимают медикаменты совсем, либо принимают одновременно несколько видов препаратов и в значительных дозах) Например, является ли доход нормально распределенной величиной? - скорее всего, нет. Случаи редких болезней не являются нормально распределенными в популяции, число автомобильных аварий также не является нормально распределенным, как и многие переменные, интересующие исследователя.
Более того, в большинстве случаев тип распределения СВ неизвестен, либо его невозможно определить вследствие малого объема выборки;
во-вторых, очень часто врачу приходится иметь дело с качественными (категориальными) признаками, для которых можно определить лишь частоту встречаемости. Это, например, наличие или отсутствие у пациента какого-либо симптома, исходы лечения (выздоровление, хронизация заболевания и др.), степень тяжести больного, оценка результатов лабораторного теста (низкий, нормальный, высокий уровень показателя) и др.;
в-третьих, многие СВ, которые нужно оценить являются по своему смыслу дискретными, то есть величинами имеющими строго раздельные значения, между которыми других значений быть не может. Сюда относятся многие диагностические признаки: число баллов, полученных при анкетировании, число приступов заболевания, число случаев выздоровления и др.;
в-четвертых, очень часто при статистическом анализе в медицине приходится сравнивать относительные СВ, отражающие долю (проценты, промилле и др.). Так, например, в здравоохранении принято выражать рождаемость, заболеваемость, смертность и многие другие явления в показателях интенсивности. Это число случаев, приходящихся на 1000, 10 000, 100 000 человек.
Поэтому применение параметрических критериев в медицине, в частности t-критерия Стьюдента, далеко не всегда оправдано. При невыполнении четырех выше указанных условий для проведения корректного исследования и получения верных выводов необходимо использовать непараметрические методы статистической обработки. Свое название они получили в связи с тем, что данных методы не требуют учета параметров распределения СВ, например, его симметричности, пикообразности и других.
С другой стороны, непараметрические тесты имеют меньшую статистическую мощность (менее чувствительны), чем их параметрические аналоги, и если важно обнаружить даже слабые отклонения (например, является ли данная пищевая добавка опасной для здоровья), следует особенно тщательно выбирать статистический критерий и проводить многократные испытания.
Кроме того, непараметрические методы наиболее приемлемы, когда объем выборок мал. Если данных много (например, n >100), то появляется возможность проверки типа распределения признаков. И если распределение близко к нормальному, то нет смысла использовать непараметрические критерии. В таких случаях параметрические методы будут более чувствительными.
Таким образом, для получения верного вывода, чрезвычайно важен выбор адекватного метода статистической обработки данных.