Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


I. Организационный момент. 1. Имя какого сказочного героя здесь зашифровано? 15 – 7 + 4 А 16 – 10 + 8 О




II. Устный счет.

1. Имя какого сказочного героя здесь зашифровано?

15 – 7 + 4 А   16 – 10 + 8 О
         
12 – 6 + 2 Д   6 + 5 + 0 Е
         
9 + 9 – 1 Р   9 + 5 – 7 Г

 

         
Г Е Р Д А

2. Нарисуйте недостающую фигуру, чтобы в каждом ряду были фигуры разной формы.

3. Сравните тексты задач. Чем они похожи? Чем отличаются?

На одной остановке из автобуса вышли 10 человек, на другой – 20. На сколько меньше пассажиров стало в автобусе?   На одной остановке из автобуса вышли 10 человек, на другой – 20. Сколько человек вышло из автобуса?

– Можно ли утверждать, что решения этих задач одинаковы?

III. Сообщение темы урока.

– Рассмотрите чертежи на доске:

– Какую закономерность вы обнаружили? (У каждой следующей фигуры увеличивается количество углов и сторон на 1.)

– Название каких фигур вы знаете?

– Какие затруднения у вас возникли?

– Как можно назвать все эти фигуры одним словом?

– Об этом мы и будем говорить сегодня на уроке.

IV. Изучение нового материала.

– Вы уже умеете различать и изображать на бумаге такие фигуры, как треугольник, четырехугольник, пятиугольник. Такие фигуры обычно называют многоугольниками.

Задание № 1 (с. 36).

– Посмотрите на рисунок на с. 36 учебника. В верхней его части нарисовано печенье в форме многоугольников. Сколько углов имеет каждая из этих фигур?

– Теперь рассмотрим желтый многоугольник, нарисованный в рамке. Сколько в нем углов?

– Какой фигурой является каждая сторона многоугольника? (Отрезком.)

– Сколько сторон у желтого многоугольника?

– Какой фигурой является вершина многоугольника? (Точкой.)

– Сколько вершин имеет желтый многоугольник? (Пять.)

Вывод: в желтом многоугольнике 5 углов, 5 сторон и 5 вершин.

Аналогично анализируется количество углов, сторон и вершин в зеленом и красном многоугольниках.

– Что вы можете сказать о количестве углов, сторон и вершин в каждом многоугольнике?

Вывод: в любом многоугольнике углов, сторон и вершин поровну.

– Сколько же углов в семиугольнике? (7.)

– Сколько вершин в десятиугольнике? (10.)

– Сколько сторон в пятнадцатиугольнике? (15.)

Далее учитель демонстрирует заранее подготовленный плакат с изображенным на нем четырнадцатиугольником.

– Как определить название этого многоугольника? Что проще всего сосчитать? (Вершины.)

Справочный материал для учителя

Многоугольники

Ломаная называется замкнутой, если у нее концы совпадают. Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой (рис. 1). Вершины ломаной называются вершинами многоугольника, а звенья ломаной – сторонами многоугольника. Отрезки, соединяющие не соседние вершины многоугольника, называются диагоналями. Многоугольник с п вершинами, а значит и с п сторонами, называется п -угольником.

Плоским многоугольником или многоугольной областью называется конечная часть плоскости, ограниченная многоугольником (рис. 2).

Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону. При этом сама прямая считается принадлежащей полуплоскости.

На рисунке 3 а изображен выпуклый многоугольник, а на рисунке 3 б – невыпуклый. Углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.

Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

Точки называются вершинами треугольника, а отрезки – его сторонами. На рисунке 4 вы видите треугольник с вершинами А, В, С исторонами АВ, ВС, АС. Треугольник обозначается указанием его вершин.

Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырехугольника, а соединяющие их отрезки – сторонами четырехугольника. На рисунке 5 представлены три фигуры, каждая из которых состоит из четырех точек А, В, С, D и четырех последовательно соединяющих их отрезков АВ, ВС, CD и AD. Четырехугольником является только третья фигура: у первой фигуры точки А, В, С лежат на одной прямой, а у второй – отрезки ВС и AD пересекаются.

Вершины четырехугольника называются соседними, если они являются концами одной из его сторон. Вершины, не являющиеся соседними, называются противолежащими. Отрезки, соединяющие противолежащие вершины четырехугольника, называются диагоналями. У четырехугольника на рисунке 6диагоналями являются отрезки АС и BD.

Стороны четырехугольника, исходящие из одной вершины, называются соседними сторонами.

Стороны, не имеющие общего конца, называются противолежащими сторонами. У четырехугольника на рисунке 6 противолежащими являются стороны АВ и СD, BC и AD.

Фронтальная работа. (Чертежи выполнены на доске заранее.)

– Сосчитайте вершины многоугольника. Как он называется? (Четырнадцатиугольник.)

– А теперь попробуйте ответить на более сложные вопросы: бывают ли одноугольники? А двуугольники? Какой из многоугольников имеет наименьшее число углов? Как называется многоугольник, у которого 100 вершин?

– Давайте научимся показывать элементы многоугольника: вершины, стороны и углы. Рассмотрим рисунок. (Сделайте его заранее на доске.)

– Вершины – это точки. (Указкой покажите каждую вершину треугольника.) Теперь покажем стороны. Сторона многоугольника – это какая фигура? (Отрезок.) Показываем стороны как отрезки. (Конец указки движется от вершины, далее по отрезку до другой вершины.) Углы будем показывать вращением указки. Один конец указки должен находиться в вершине треугольника, сама указка – вдоль стороны, выходящей из этой вершины. Далее, не отрывая конца указки от вершины угла, двигаем указку по направлению к другой стороне, пока указка не совместится с этой стороной. Угол можно показать и дугой. (Продемонстрируйте учащимся, как правильно это сделать, и предложите им самостоятельно показать дугами каждый угол треугольника.)

– Вершины треугольника обозначают буквами. Читать обозначение можно разными способами, начиная с любой вершины, например: треугольник АВС, АСВ, ВСА, ВАС, САВ, СВА.

Задание № 2 (с. 37).

– Что изображено на рисунке? (Многоугольники.)

– Как называются данные многоугольники? (Треугольник, пятиугольник.)

– Какими геометрическими фигурами являются вершины и стороны многоугольника? (Это точки и отрезки.)

– Как принято обозначать точки на чертеже? (Прописной буквой латинского алфавита.)

– А отрезки? (Двумя прописными буквами латинского алфавита.)

– Назовите вершины треугольника. (О, М, К.)

– Назовите стороны треугольника. (МО, МК, ОК.)

– Сколько вершин и сколько сторон у этой фигуры?

Аналогично учащиеся называют вершины и стороны пятиугольника.

Задание № 3 (с. 37).

Учащиеся вспоминают, что в любом многоугольнике число сторон, углов и вершин одинаково, причем многоугольник называется в соответствии с числом его сторон, углов и вершин.

Так, в треугольнике по 3 стороны, вершины и угла, поэтому, для того чтобы сложить треугольник, потребуется 3 палочки.

Аналогично учащиеся рассуждают при анализе четырехугольника и пятиугольника.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1442 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.