Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Простые проценты и инфляция




Инфляция – это обесценивание денег, обусловленное чрезмерным увеличением выпущенной в обращение массы бумажных денег и безналичных выплат по сравнению с реальным предложением платных товаров и услуг. Дефляция – обратный процесс – это изъятие из обращения части избыточной денежной массы, комплекс мер по сдерживанию или уменьшению инфляции. Процесс дефляции характерен для случая, когда экономика находится в состоянии глубокого кризиса.

До 1936 г. считалось, что инфляция исключительно деструктивна. Однако, по утверждению Дж. Кейнса, инфляция приводит к развитию экономики, безинфляционное развитие – к накоплению денег, между тем как инфляция обесценивает их и стимулирует потребление.

Основными показателями инфляции считаются: 1средний годовой уровень инфляции (α):

αг=ΔS/S,

где S – некоторая сумма денег, имеющаяся у клиента в данный момент; ΔS – некоторая сумма денег, которая добавляется к S для сохранения покупательной способности.

2) 2 индекс инфляции (Iи):

Iи= Sα/S,

где Sα – сумма денег через время t, покупательная способность которой равна S.

Так как Sα = S + ΔS, то Iи= 1+ αг и αг= Iи – 1.

С учетом инфляции, годовой уровень которой равен αг, FVα или Sα =PV(1+ ).

- годовая процентная ставка, которая бы обеспечивала прибыль от наращения по годовой ставке и покрывала потери от инфляции.

= .

Наращенная сумма с учетом инфляции:

, где Кни= = .

Если срок кредита или депозита составляет t дней при годовой процентной ставке I и годовом уровне инфляции α, то величина наращенной суммы

FVα=

= .

 

Сложные проценты и инфляция

Наращенная сумма по сложным процентам определяется по формуле

.

Ставка сложных процентов с учетом инфляции:

= .

Коэффициент наращения:

Кни= .

Если сложные проценты начисляются m раз в году и n лет по номинальной ставке сложных процентов j, то наращенная сумма с учетом инфляции равна

Sα=

Денежный поток

Математические основы анализа инвестиционных проектов

Принимая решение об инвестировании денег в проект, необходимо учитывать возможность их альтернативного использования. Для определения будущего размера данной суммы используют формулу сложных процентов .

Из формулы сложных процентов можно вывести формулу для оценки текущей стоимости будущих поступлений

Это действие (т.е. сведение будущих денежных сумм к настоящему моменту времени) называется дисконтированием. Оно показывает, какую сумму в размере Р денежных единиц необходимо сегодня положить на счет, чтобы через n лет с учетом сложных процентов ее величина составила F денежных единиц. Параметр r (i) называется ставкой дисконтирования.

Выражение называется финансовым множителем FM1(r,n).

Выражение - финансовым множителем FM2(r,n).

Таким образом, формулу сложных процентов можно представить в виде F=PFM1(r,n), а формулу дисконтирования - в виде P=FFM2(r,n).





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 744 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2193 - | 2115 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.