Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Предельные значения функции




123. Пусть переменная удовлетворяет неравенству

На числовой прямой укажите интервалы, которым принадлежит .

124.На лежащую на опорах прочную стальную балку села муха. Балка прогнулась.

Является ли прогиб балки бесконечно малой величиной?

125. Найти предельное значение переменной при , если

 

126.Проверить по графику функции: существует ли предельное значение данной функции?

при стремлении аргумента к (-2).

127.Проверить по графику функции: существует ли предельное значение данной функции?

 

при стремлении аргумента к 0.

128.Пусть

Вычислить

129.Пусть

Вычислить

130.Используя калькулятор, укажите к чему стремятся значения функции , если значения аргумента стремятся слева к точке

по точкам

131.Используя калькулятор, укажите к чему стремятся значения функции ,

если значения аргумента стремятся справа к точке по точкам

 

132.Используя график функции вычислить приближенно значения функций, левые и

правые предельные значения функций в точке

1) 2) 3)

 

133.Пусть . Вычислить предельные значения .

134. Пусть . Вычислить предельные значения

.

135.Пусть . Вычислить предельные значения

.

136.Вычислить левые и правые предельные значения следующих функций.

Написать уравнения их горизонтальных и вертикальных асимптот

 

При вычисления следующих пределов используйте теорему

Теорема. Для любой элементарной функции справедлива формула

137.Вычислить указанные пределы и значения функции в предельных точках

138.Вычислить указанные пределы

 

139. Вычислить указанные пределы

 

 

140.Вычислить указанные пределы

141. Вычислить и написать уравнения горизонтальных асимптотк графикам

данных функций.

142. Вычислитьи написать уравнения вертикальныхасимптот к графикам функций

данных функций.

 

Непрерывность и разрывы функций

143. Пусть функции определены на интервале и их сумма и их разность являются непрерывными функциями. Доказать, что тогда функции являются непрерывными.

144. Указать интервалы на осиОХ, в которых данные функции непрерывны

145. При каком значении А данные функции непрерывны

 

146. Исследовать данные функции на непрерывность

 

147.Исследовать данные функции на непрерывность и дать эскизы графиков

148. Среди данных интервалов

указать интервалы, в которых функция достигает наибольшего и

наименьшего значений.

149.Доказать что данные функции непрерывны, дать эскизы графиков и по ним

найти наибольшее и наименьшее значения функций

 

 

 

150.Исследовать данную функцию на непрерывность

на множествах

151. Доказать, что любой кубический многочлен имеет по крайней мере

один ноль.

Замечательные пределы

152. Используя замечательные пределы найти предельные значения следующих выражений

 

;

 

 

 

 

153. Используя второй замечательный предел найти предельные значения следующих выражений

154.Вычислить указанный предел

155.Вычислить указанный предел 1) ;

 

Дифференцирование. Определения. Основные правила.

 

156.Вычислить приращение функции в точке

157.1)Используя определение производной функции и соответствующие

замечательные пределы вычислить производные данных функций

:

2)Написать уравнение касательной и нормальной прямой к функции

в точке :

3) Найти точки пересечения полученных касательных с осями координат.

158.

 

По данному графику функции написать приближённо уравнения касательных к графику в точках заданных координатами .

 

 

159. Найти угол между касательными проведенными в точках

к графику функции

 

160. Найти угол между графиками функций и осью ОХ в указанных точках

161. Найти острый угол между графиками функций в точке

их пересечения

162.. По оси движется точка, абсцисса которой с течением

времени изменяется по закону +2. Определим абсциссу точки и её

скорость и ускорение в моменты времени: . Определить

моменты времени, когда усилие действующее на точку равно: 1) нулю,

2) максимально.

 

163. Пусть материальная точка движется вдоль оси ОХ по закону , где

- время:

А. Вычислить среднюю скорость за промежуток времени .

В.вычислить мгновенную скорость точки в моменты времени

164. Найти координаты материальных точек, движущихся по закону

, в момент времени когда

их скорости совпадают.

165. Вычислить производные функций

166. Вычислить производные функций

167. Вычислить производные функций

 

168. Используя калькулятор, вычислить производные функции в точке

169. Найти функцию по заданной производной. Сделать проверку

170. Доказать, что данная функция:

обращает соответствующее уравнение в тождество:

 

171.Найти вторые производные заданных функций

172. Доказать, что функция превращает уравнение

в тождество.

Функция от функции

173. Применив цепное правило вычислить производные функций

;

;

23)

174. Используя калькулятор, вычислить производные функций в заданной точке

175. Вычислить угол между касательными к функции в точках.

.

158.Используя равенства

доказать формулы





Поделиться с друзьями:


Дата добавления: 2016-10-27; Мы поможем в написании ваших работ!; просмотров: 569 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.