Пермский государственный технический университет
Кафедра общей физики
ФИЗИКА
Лабораторный практикум
для студентов – заочников
Всех специальностей
Пермь 2002
План УМД 2001/2002 уч. г.
ФИЗИКА. Лабораторный практикум для студентов – заочников всех специальностей/Перм. гос. техн.ун-т, Пермь, 2002, - 70 с.
Составители: Н.А. Вдовин, к.ф.-м.н., доцент, В.Н. Зайцев, ст. преподаватель, В.А. Лощилова, ассистент, Т.Д. Марценюк, ассистент, Ю.К. Щицина, ст. преподаватель.
Под общей ред. д.т.н., профессора Цаплина А.И.
Практикум включает в себя 9 лабораторных работ. В начале каждой работы даны краткие теоретические сведения, а в конце - вопросы для самоконтроля. Указан порядок выполнения работ.
Практикум предназначен для студентов заочной формы обучения.
Рецензент: канд. физ.-мат. наук, доцент К.Н. Лоскутов.
ÓПермский государственный
технический университет,
СОДЕРЖАНИЕ
Введение............................................................................................. 4
1.Обработка результатов измерений
на примере задачи определения объема цилиндра..................... 5
2. Маятник Обербека....................................................................... 15
3. Физический маятник....................................................................... 22
4. Исследование электростатических полей................................... 27
Определение ЭДС источника тока
компенсационным методом.......................................................... 32
6. Определение магнитной индукции в межполюсном зазоре
прибора магнитоэлектрической системы.................................... 36
7. Определение радиуса кривизны линзы
с помощью колец Ньютона........................................................... 42
8. Изучение явления дифракции света
с помощью дифракционной решетки........................................... 47
9. Исследование фотоэлементов....................................................... 60
Приложения........................................................................................ 66
ВВЕДЕНИЕ
Лабораторные работы являются неотъемлемой частью изучения курса физики. При их выполнении студент воспроизводит некоторые физические явления, учится обращению с основными физическими приборами и методами измерений, приобретает навыки ведения лабораторного журнала, построения графиков, оценки достоверности полученных результатов и оформления отчета.
Распределение объемов занятий и видов учебной работы при изучении физики для студентов-заочников всех специальностей дано в табл. 1.
Таблица 1
Занятия, часы | ||||||
Семестр | Лекции | Лабора-торные работы | Практи-ческие | Самосто ятельная работа | Выпол-нение контро-льных и курсо-вых ра-бот | Конт-роль |
1-4 | 8-32 | 8-12 | – | 185-456 | 2-6 | Экзамен и/или зачет |
Основной формой подготовки к лабораторным работам является самостоятельная работа студента по изучению предлагаемого материала. Целесообразно проработать материал, пользуясь списком вопросов к каждой лабораторной работе.
СПИСОК ЛИТЕРАТУРЫ
Основная
1. Трофимова Т.И. Курс физики: Учебное пособие.-7 изд., испр.-М.: Высш. шк,2001.-542 с.
Дополнительная
2. Савельев И.В. Курс общей физики. М.: Наука,1988. Т.1-3.
3. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высш. шк., 1989.
4. Лабораторный практикум по физике. Под ред. К.А. Барсукова и Ю.И. Уханова. М.: Высш шк., 1988.
ЛАБОРАТОРНАЯ РАБОТА № 1
Обработка результатов измерений
На примере задачи определения обьема цилиндра
Цель работы: ознакомиться с методом обработки результатов измерений.
Приборы и принадлежности: цилиндр, штангенциркуль, микрометр.
Теоретические сведения
Каждая лабораторная работа физического практикума связана с измерениями тех или иных физических величин. Под измерением понимается сравнение измеряемой величины с другой величиной, принятой за единицу измерения.
Различают измерения прямые и косвенные.
Прямые - это измерения, которые производятся с помощью приборов, непосредственно дающих значение измеряемой величины (длины - линейкой, штангенциркулем; времени - секундомером; силы тока - амперметром и т.д.)
Косвенныe - это измерения, при которых неизвестная величина определяется по результатам прямых измерений других величин, с которыми она связана определенной формулой, например, плотность вещества r вычисляют через измеренные m - массу и V – объем тела по формуле r = m /V; электросопротивление проводника R - через измеренные напряжение U и силу тока I по формуле I = U/R и т.д.
При измерениях любой величины мы никогда не получаем ее истинного значения. Это объясняется принципиальной невозможностью устранить все посторонние влияния на процесс измерения. Иначе говоря, при всяких измерениях мы допускаем ошибки; их величину принято характеризовать абсолютной погрешностью измерений D x (cм. ниже) и относительной погрешностью e. Эти характеристики не являются независимыми. На способах определения D х подробно остановимся ниже. Что же касается e, то относительной погрешностью измерений называют отношение абсолютной погрешности к истинному значению измеряемой величины
.
Так как х0 - величина неизвестная, то на практике x0 заменяют найденным из опыта среднеарифметическим значением < x >, поэтому
. (1.1)
Относительную погрешность часто выражают в процентах. Таким образом, задача всякого измерения состоит из нахождения наиболее вероятного значения измеряемой величины и оценки абсолютной и относительной погрешности.
Погрешности прямых измерений
Принято различать три типа ошибок погрешностей прямых измерений: промахи, систематические погрешности и случайные погрешности.
1. Промахи -грубые ошибки, существенно превышающие ожидаемую при данных условиях погрешность. Они вызываются невнимательностью экспериментатора, использованием неисправных приборов и т.д. Как правило, промахи быстро выявляются; наблюдения, содержащие их, следует отбрасывать, как не заслуживающие доверия.
2. Случайные погрешности - погрешности, вызванные большим числом случайных неконтролируемых помех (сотрясением фундамента здания, изменением напряжения электрической сети, реакцией наблюдателя). В итоге при повторных наблюдениях получаются несколько отличающиеся друг от друга результаты. Исключить случайные погрешности нельзя, можно лишь оценить их величину. Как это сделать, нам подсказывает так называемая теория погрешностей. В основе этой теории лежат два предположения, подтверждаемых опытом:
а) при большом числе измерений случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто;
б) большие (по абсолютной величине) погрешности встречаются реже, чем малые.
Именно из этих предположений следует, что при многократных измерениях величины х наиболее близким к ее истинному значению х0 является среднее арифметическое значение:
, (1.2)
где n - число измерений.
Упомянутая выше теория погрешностей дает возможность найти величину случайной погрешности D хсл, т.е. расхождение между х и < x >. При этом исходят из следующих соображений.
Пусть a характеризует вероятность того, что истинное значение х измеряемой величины отличается от < x > на величину, не большую D хсл, т.е. вероятность того, что истинное значение попадет в интервал от <x> - Dxсл до <x>+Dxсл (рис. 1.1). Например, если a = 0,95, то это означает, что примногократных повторениях опыта ошибки отдельных измерений в 95 случаях из 100 не превысят значения D хсл. Вероятность a называется доверительной вероятностью или надежностью, а интервал значений (< x >± D xсл) - доверительным интервалом. Как видно, D xсл - это полуширина доверительного интервала. Ее-то и принимают за абсолютную случайную погрешность.
Задача, очевидно, состоит в том, чтобы отыскать D xсл при наперед заданном значении a. Решению этого вопроса помогает существующая между D xсл и a математическая связь. Качественно эта связь ясна: чем с большей надежностью мы хотим указать результат данных измерений, тем больше должен быть доверительный интервал.
В теории погрешностей в качестве единицы ширины доверительного интервала выбрана так называемая средняя квадратичная погрешностьрезультата измерений
S = . (1.3)
Здесь - среднее для измеренных n значений (i =1,2,3,…, n); - отклонение i - го наблюдения от среднего значения, n - число измерений.
Учитывая сказанное, было предложено в случае небольшого числа измерений (именно так обстоит дело в учебных лабораториях) вычислять полуширину доверительного интервала по формуле:
Dхсл , (1. 4)
где ta,n - некоторое, зависящее от a и n, число, называемое коэффициентом Стьюдента. Зависимость ta,n от n понятна: чем больше n, тем меньше отличается от истинного значения, и тем меньше будет доверительный интервал, точнее результат измерения, а значит меньше ta,n.
3. Систематическими называются погрешности, которые сохраняют свою величину и знак во время эксперимента. Систематические ошибки вызываются разными причинами, односторонне влияющими на результат измерений:
-ограниченной точностью приборов (измерительных инструментов) - приборные (инструментальные погрешности;
-неправильной настройкой (неравные плечи весов, стрелка не установлена на ноль и т.д.);
-в расчетных формулах не учтено влияние некоторых второстепенных факторов (например, при взвешивании не учитывается сила Архимеда, при измерении электросопротивления не учитывается сопротивление проводящих проводов);
-округлениями, которые производятся при измерениях и вычислениях.
В большем числе случаев систематические погрешности могут быть изучены и скомпенсированы путем внесения поправок в результаты измерений. Если же сделать этого нельзя (или сложно) необходимо правильно учесть вклад систематической ошибки в общую ошибку измерений.
При выполнении лабораторных работ приходится оценивать, как правило, следующие систематические ошибки:
а) Приборную (инструментальную) погрешность. Погрешность показания прибора (например, связанная с неправильностью разбивки шкалы амперметра, линейки...) является вполне определенной. При обработке результатов измерений этот вид погрешностей задается в виде так называемой предельной погрешности прибора ( коротко - приборной погрешности), указывающей, какова максимально возможная погрешность при использовании данного прибора. При этом для одних приборов указывается предельная абсолютная погрешность Dхпр, для других (электроизмерительных, части оптических) предельная относительная погрешность (класс точности прибора к).
Классом точности прибора называется отношение предельной абсолютной погрешности к максимальному значению измеряемой прибором величины
100 %. (1.5)
Классов точности семь: 0,02; 0.05; 0,1; 0.5; 1; 2,5; 4. Это число указано на шкале прибора. Зная класс точности и пределы измерения прибора, можно рассчитать его предельную погрешность
. (1.6)
Приборная погрешность других приборов равна точности измерительного прибора, под которой понимают ту наименьшую величину, которую можно надежно определить с помощью данного прибора. Точность прибора зависит от цены наименьшего деления его шкалы и указывается на самом приборе или в его паспорте. Если этих данных нет, то пользуются следующими правилами. Если прибор снабжен нониусом (например, штангенциркуль), то его точность (и приборная погрешность) равна цене наименьшего деленияD х пр=D. При этомD = l / m, где l - цена наименьшего деления основной шкалы прибора, m - число делений нониуса; при отсутствии нониуса (линейка, термометр,...) точность прибора равна половине наименьшего деления шкалы прибора: .
Приборная погрешность D х пр представляет собой наибольшую погрешность, даваемую прибором. Действительная же погрешность прибора D х прст (стандартное отклонение) носит случайный характер и меньше D х пр. Строгих формул для перевода D х пр в D х прст нет, чаще всего пользуются выражением
(1.7)
где - коэффициент Стьюдента при n = ¥.
Примечание: для электроизмерительных приборов D х пр не зависит от значения измеряемой величины х изм. Относительная же погрешность измерения, т.е. D х пр / х изм, зависит от х изм: чем больше х изм, тем меньше относительная погрешность. Поэтому при измерениях рекомендуется выбирать такие пределы измерения, чтобы отсчеты на них производились бы по второй половине шкалы прибора.
б) Погрешность округления при измерении. При измерениях показания приборов часто лежат между делениями шкалы. Отсчет “на глаз” долей деления затруднительны. Поэтому показания приборов, как правило, округляются - возникает погрешность округления при измерениях.
Интервал округления может быть различным. Чаще всего это либо цена наименьшего деления шкалы - D, либо половина цены деления. Очевидно, максимальная погрешность округления равна половине интервала округления, т.е. величине D/2. Действительная же погрешность меньше, и при доверительной вероятностиa за погрешность округления принимают величину
. (1.8)
в) Погрешность округления при вычислениях. Этот вид погрешности приходится учитывать только при косвенных измерениях. По этой причине сведения по данной погрешности в следующем разделе.
4. Полная погрешность. Как уже отмечалось, в реальных условиях присутствуют как случайные, так и систематические погрешности. В теории вероятности показывается, что погрешность, обусловленная несколькими независимыми причинами, определяется квадратичным суммированием, т. е. полная абсолютная погрешность прямого измерения
(1.9)
Относительная погрешность
(1.10)
При этом доверительная вероятность a выбирается одинаковой для всех видов погрешностей.
Некоторые из слагаемых под знаком корня могут быть настолько малыми по сравнению с другими, что ими можно пренебречь (малыми считаются ошибки, которые не превышают 30 % от максимальной).
В заключение отметим, что количество необходимых измерений определяется соотношением приборной и случайной погрешностей. Если при повторных измерениях получается одно и то же значение, то это означает, что случайная погрешность в данном методе измерений значительно меньше приборной и большее число измерений не изменит общей ошибки.
При значительной случайной погрешности (при повторных измерениях получаются отличные друг от друга значения) число измерений лучше выбрать такими, чтобы случайная погрешность среднего арифметического была меньше приборной, или, по крайней мере, одного с ней порядка.