Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теоретичні відомості про еліпс




 

Еліпсом називається множина точок, сума відстаней від яких до двох заданих точок, що називаються фокусами, є величина стала , більша за відстань між фокусами . Рівняння еліпса, фокуси якого лежать на осі , має вигляд:

, ,

де довжина великої півосі, довжина малої півосі.

Залежність між параметрами виражається співвідношенням: .

Ексцентриситетом еліпса називається відношення фокусної відстані до великої осі:

Якщо фокуси еліпса лежать на осі , то його рівняння має вигляд:

, .

В усіх задачах на еліпс передбачено, що осі симетрії еліпса збігаються з осями координат.

 

Задача №3. Скласти рівняння еліпса, якщо його більша вісь дорівнює 10, а ексцентриситет .

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Задача №4. Дано еліпс . Обчислити його ексцентриситет.

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Задача № 5. Дано еліпс . Знайти координати його вершин і довжини осей.

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Теоретичні відомості про гіперболу

Гіперболою називається геометричне місце точок модуль різниці відстаней для кожної з яких до двох даних фіксованих точок (фокусів) є величина стала, менша за відстань між фокусами і дорівнює . Найпростіше рівняння гіперболи:

,

де - дійсна піввісь гіперболи, - уявна піввісь.

Якщо - відстань між фокусами, то . При = гіпербола називається рівносторонньою, її рівняння має вигляд: Фокуси гіперболи знаходяться на її дійсній осі. Ексцентриситет гіперболи – це відношення фокусної відстані до довжини дійсної осі:

Асимптоти гіперболи – прямі, що задаються рівняннями .

Якщо фокуси гіперболи лежать на осі , то її рівняння має вигляд:

або ,

а рівняння асимптот такої гіперболи .

Рівняння рівносторонньої гіперболи з фокусами на осі має вигляд:

Гіперболи:

і

називаються спряженими.

В усіх задачах на гіперболу передбачено, що осі симетрії гіперболи співпадають з осями координат.

Задача №1. Скласти рівняння гіперболи, що має асимптотами прямі і проходить через точку (-5;2).

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Задача №2. Скласти рівняння гіперболи, якщо її вершини лежать в точках і фокуси в точках .

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Задача № 3. Дано рівняння гіперболи Знайти координати її вершин і фокусів.

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 418 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2219 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.