Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формирование понятия натурального числа и числа нуль




Числа возникли в результате деятельности людей: делать измерения, счетать. Соответствие понятия числа связана с этими видами деятельности. При 1-м подходе натур. число рассматривается как результат измерения величины. Измерить величины – значит сравнить с некоторой однородной величиной принятой за единицу и результат выразить числом. При 2-м подходе натуральное число рассматривается как количественная характеристика класса непустых конечных множеств.

Число 0 рассматривается как конечная характеристика пустого множества (если нет предметов, то в математике говорят так: 0 предметов).

Оба подхода к понятию числа реализуются в начальных классах. 1 подход – Эльконин и Давыдов; 2 подход – во всех системах.

В математике есть ещё один подход к понятию числа - натуральное число рассматривается как член натурального ряда чисел, а сам натуральный ряд определяется с помощью аксиом Пиано.

Толкования числа: (функции)

1. количественная функция числа: число позволяет ответить на вопрос «сколько», ответ выделяется с помощью числа.

Счёт – операция установ взаимно – одназнач соответствия между элементами множества и началом отрезком натур ряда.

2. порядковая: число отвечает на вопрос «который по счёту» и определяет номер в ряду предмета.

3. измерительная: число позволяет отразить результат измерения величины.

4. операторная (вычислительная): число является резул-м арифмет-х дейс-й.

Изучая числа в начальных классах дети одновременно знакомятся с записью и чтением чисел.

Учащиеся должны осознать количественное и порядковое значение числа. Они должны научиться пользоваться усвоенным ими отрезком натурального ряда чисел для получения ответа на вопрос, сколько элементов входит в состав предложенного им множества, понять, что с помощью той же числовой последовательности можно расположить элементы этого множества в определенном порядке, перенумеровав их.

На примере первых десяти чисел натурального ряда дети знакомятся с принципами его построения. Они осознают и усваивают, что для получения числа, следующего за данным, достаточно прибавить единицу к данному числу и что поэтому числа в натуральном ряду возрастают (каждое число ряда больше всех чисел, встречающихся при счете раньше этого числа, и меньше любого числа, которое называется при счете после него). Эти знания они применяют для сравнения чисел. Они узнают далее, что каждое число (кроме единицы) может быть представлено в виде суммы двух или нескольких слагаемых. Уже здесь, при первом знакомстве с числами, выясняется, что каждое число может быть не только названо, по и записано, что для записи чисел существуют специальные знаки — цифры.

Наряду с упражнениями, при выполнении которых дети получают число в результате счета предметов, довольно скоро включаются и такие упражнения, которые должны показать детям получение числа в результате измерения. Первым шагом в этом направлении является ознакомление с сантиметром и измерением отрезка с помощью разделенной на сантиметры линейки (модель такой линейки имеется в приложении к учебнику для 1 класса).

Уже в теме «Десяток» происходит знакомство с числом и цифрой нуль. Таким образом, уже с первых шагов обучения дети имеют дело с расширенным натуральным рядом, хотя и знакомы еще с очень коротким его отрезком.

Нуль с самого начала вводится как характеристика пустого множества (т. е. множества, которое не содержит ни одного элемента. Например, нуль будет служить ответом на вопрос: «Сколько холодильников учится в нашем первом классе?» Нуль будет ответом при решении задачи: «У мальчика было 1 яблоко. Он его съел. Сколько яблок осталось у мальчика?»).

При ознакомлении с линейкой специальное внимание должно быть уделено осознанию нуля как начала отсчета: цифра 1 на линейке обозначает конец отрезка длиной 1 см, а начало этого отрезка обозначено цифрой нуль.

Знакомство с линейкой, разбитой на сантиметры, дает возможность использовать ее в качестве наглядного пособия при сравнении чисел, а в дальнейшем и при выполнении сложения вычитания.

Этапы изучения чисел. Выделяют 2 этапа: Дочисловой и Числовой.

Дочисловой затрагивает детск сад и подготовит этап в школе. Дети работают над понятиями: один и много, учатся выделять элементы множества. Дети постепенно учатся вести счёт, идёт работа над получением числа с опорой на предметы.

Числовой, направления в работе: 1. число сначала рассматривают как член натурального ряда. 0 как число, которое стоит перед числом 1; 2. вводятся операторная функция числа – именованные числа 5 см; 3. работа над записью чисел и его чтения.





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 2531 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

3465 - | 3130 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.