Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Показатели качества регрессии




Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции может быть найден как

, (7)

где - общая дисперсия результативного признака;

- остаточная дисперсия для уравнения .

Границы изменения величины - от 0 до 1. Чем ближе значение к единице, тем теснее связь результативного признака со всем набором исследуемых факторов. Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции:

.

При правильном включении факторов в регрессионный анализ величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение факторы малозначимы, то индекс множественной корреляции может практически совпадать с индексом парной корреляции.

Для вычисления индекса множественной корреляции можно пользоваться следующей формулой

.

Для линейного уравнения регрессии в стандартизованном масштабе формула индекса множественной корреляции может быть представлена в виде

. (8)

Пример. Для уравнения корреляции, полученного в предыдущем примере, вычислить индекс множественной корреляции и сравнить его с парными индексами корреляции.

Ранее были получены следующие значения:

; ; .

Тогда по формуле (8) получаем

.

Сравниваем индекс множественной корреляции с парными индексами корреляции:

.

Следовательно, включение обоих факторов в уравнение множественной регрессии является обоснованным.

 

Значимость уравнения множественной регрессии в целом оценивается с помощью с помощью F -критерия Фишера:

, (9)

где - индекс множественной корреляции (тоже, что и );

- число наблюдений;

- число факторов.

Полученное по формуле (9) значение F сравнивается с табличным при уровне значимости . Если фактическое значение F -критерия Фишера превышает табличное, то уравнение статистически значимо с вероятностью . При использовании таблицы следует принимать .

Пример. Для уравнения корреляции, полученного в предыдущих примерах, вычислить значение F -критерия Фишера и определить статистическую значимость уравнения.

Ранее был вычислен индекс множественной корреляции . По формуле (9) получаем

.

По таблице определяем для значений :

Мы видим, что , а значит полученное уравнение корреляции является статистически значимым.

 





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 579 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2134 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.