Физические процессы
Лекция 12.
4 часа.
АНАЛИТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОБЪЕКТОВ ГЕОМЕХАНИКИ.
М атематические модели объектов представляют собой математическое описание условий нагружения, конфигурации, взаимного положения и параметров горных выработок и других элементов систем разработок. Здесь также к настоящему времени накоплен достаточный опыт применения различных моделей с той или иной степенью детальности и адекватности реальным условиям описывающих конкретные горнотехнические ситуации и условия деформирования и разрушения породных конструкций, крепей выработок или каких-либо инженерных сооружений.
Определение напряжённо-деформированного состояния пород
вокруг одиночной горной выработки
В задачах геомеханики можно выделить ряд типовых схем, которые, являются как бы классическими и которые можно применять к бесконечному множеству реальных ситуаций.
Подобной типовой задачей прежде всего является определение напряжённо-деформированного состояния пород вокруг одиночной горной выработки в массиве горных пород.
Проведение выработок с физической точки зрения можно представить как образование полости в массиве горных пород, обладающем определёнными свойствами и начальным (или естественным) полем напряжений. При этом вокруг выработки формируется новое поле напряжений и смещений, которое можно представить как сумму начального поля напряжений и смещений нетронутого массива (т.е. до проведения выработки) и дополнительного поля напряжений и смещений, являющегося результатом выемки породы при проведении горных работ.
В случае одиночной протяжённой выработки, у которой длина во много раз превышает два других размера (высоту и ширину), объёмная задача по вычислению компонент напряжений и перемещений в массиве пород на основе упругой изотропной и однородной модели может быть сведена к плоской, т. е. к рассмотрению полей напряжений и перемещений лишь вокруг поперечного сечения выработки.
Задачи подобного рода обычно сводят к расчету напряжений вокруг сечения выработки в невесомом массиве с внешними, удаленными от центра выработки, границами, нагруженными напряжениями, действующими в нетронутом массиве в точке, которая соответствует центру выработки (рис. 12.1а ).
Такая расчетная схема отличается простотой и наглядностью и дает возможность достаточно точно оценить концентрацию напряжений в окрестности горной выработки. Однако для определения значений смещений необходимо из полного поля смещений, соответствующего полному полю напряжений, вычесть начальное поле смещений, соответствующее начальному напряженному состоянию массива.
![]() |
Рис. 12.1. Расчетные схемы для определения напряженно-деформиро-ванного состояния массива пород вокруг одиночных выработок.
а - для определения поля напряжений в окрестности выработки; б - для вычисления компонент смещений.
В случае использования упругой модели массива значения смещений могут быть определены более простым способом, используя расчетную схему для невесомого породного массива с горной выработкой, контур которой нагружен напряжениями, численно равными напряжениям нетронутого массива в точке, соответствующей центру выработки, и обратными по знаку (рис. 12.1б).
Для получения указанных решений необходимо с учетом уравнений связи между напряжениями и деформациями совместно проинтегрировать уравнения равновесия и уравнение неразрывности деформаций, в котором компоненты деформаций выражены напряжениями.
Указанные уравнения представляют собой однородную систему и вследствие этого её общее решение содержит одну функцию F(x,у) от независимых переменных х и у и имеет следующий простой вид:
¶ 2F¶ 2F¶ 2F
sх = -------; sy = --------; tхy = - ------------- (12.1)
¶ y2 ¶ x2 ¶ x ¶ y
При подстановке значений sх и sy в выражение (12.1) получаем уравнение четвертого порядка в частных производных (бигармоническое уравнение):
¶ 4F¶ 4F¶ 4F
------- + 2------------ + ---------- = 0(12.2)
¶ x4 ¶ x2 ¶ y2 ¶ y2
К бигармоническому уравнению (12.2) необходимо добавить граничные условия, т. е. условия нагрузки на контуре рассматриваемого отверстия, тоже выраженные через функцию F(x,у).
Таким образом, плоскую задачу теории упругости при заданных нагрузках можно с математической точки зрения трактовать как необходимость определения функции F(x,у) из уравнения (12.2). Эту функцию называют функцией напряжения (функцией Эри).
Необходимо отметить, что обычно при теоретических определениях напряженно-деформированного состояния в условиях упругого деформирования пород, в первую очередь, вычисляют действующие напряжения, а затем уже находят перемещения и деформации.
При экспериментальных же определениях, в противоположность этому, обычно измеряют перемещения или деформации, а затем по этим данным вычисляют действующие напряжения.
Указанное упругое решение о напряжённо-деформированном состоянии пород вокруг одиночной выработки принимают в качестве основного, первого приближения (исходных значений) при определении напряженного состояния пород вокруг выработок с учётом более сложных моделей массива, в частности, в условиях неупругого деформирования пород. При этом особенности деформирования массива учитывают путем введения дополнительных условий.
Но если упругие значения напряжений имеют и самостоятельное значение, поскольку являются верхним пределом возможных значений напряжений, то расчетные упругие перемещения и и v находят ограниченное применение при решении практических вопросов геомеханики. Обычно их используют лишь в качестве исходных значений для расчета перемещений и деформаций при неупругом деформировании пород.