Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Потенциалы действия кардиомиоцитов




Клиническая

Анестезиология

Книга вторая

Дж. Эдвард Морган-мл. Мэгид С. Михаил

Перевод с английского под редакцией

академика PAMH А. А. Бунятяна,

канд. мед. наук A. M. Цейтлина


Издательство БИНОМ

Москва


Невский Диалект

Санкт-Петербург


 

 


УДК 616-089.5 ББК Р451 М79

 


Перевод с английского: канд. мед. наук Горелов В. Г., Добродеев А. С., канд. мед. наук Селезнев M. H., канд. мед. наук Цейтлин A. M., Шатворян Б. P.

Дж. Эдвард Морган-мл., Мэгид С. Михаил

М79 Клиническая анестезиология: книга 2-я.— Пер. с англ. — M.-СПб.: Издательство БРШОМ-Невский Диалект, 2000. 366 с., ил.

В книге рассмотрены физиологические основы проведения анестезии у пациентов с сопутствующими заболеваниями сердечно-сосудистой системы, органов дыхания, нервными и психическими расстройства­ми, нарушениями водно-электролитного баланса и кислотно-основного состояния. В отдельных главах представлены методы проведения анестезиологического пособия в пред-, интра- и постоперационном пе­риодах при хирургических вмешательствах на сердце и сосудах, легких и трахее, пищеводе, головном и спинном мозге и позвоночнике, почках и других органах мочевыделительной системы. Детально освеще­ны вопросы проведения инфузионной терапии — показания, методы, виды растворов, осложнения и аль­тернативные варианты.

Для врачей-анестезиологов, реаниматологов, студентов медицинских учебных заведений.

Все права защищены. Никакая часть этой книги не может быть воспроизведена в любой форме или любыми средствами, электронными или механическими, включая фотографирование, магнитную запись или иные средства копирования или сохранения информации, без письменного разрешения издательства.


ISBN 5-7989-0165-3 (Издательство БИНОМ) ISBN 5-7940-0044-9 (Невский Диалект) ISBN 0-8385-1470-7 (англ.)


Издание на русском языке: © Издательство БИНОМ, Невский Диалект, перевод, оформление, 2000.

Original edition copyright

© 1996, All Rights Reserved.

Published by arrangement with the Original Publisher,

Appleton & Lange a Simon & Schuster Company


Раздел IV

Анестезиологическое

Пособие

Физиология кровообращения л q
и анестезия


 


Анестезиолог должен иметь фундаментальные знания по физиологии кровообращения, которые необходимы как для понимания научных основ специальности, так и для практической работы. В этой главе обсуждаются вопросы физиологии сердца и большого круга кровообращения, а также патофизиологии сердечной недостаточности. Малый (легочный) круг кровообращения рассмат­ривается в главе 22, физиология крови и обмен ве­ществ — в главе 28.

Система кровообращения состоит из сердца и кровеносных сосудов. Она предназначена для снабжения тканей кислородом и питательными ве­ществами и удаления продуктов метаболизма. Сердце перекачивает кровь через две сосудистые системы. В малом круге кровообращения кровь обогащается кислородом и избавляется от угле­кислого газа. В большом круге — доставляет кис­лород к тканям и поглощает продукты метаболиз­ма, которые затем элиминируются через легкие, почки или печень.

Сердце

Анатомически сердце представляет собой единый орган, но функционально оно делится на правый и левый отделы, каждый из которых состоит из предсердия и желудочка. Предсердия служат как проводниками для крови, так и вспомогательны­ми насосами для заполнения желудочков. Желу­дочки выполняют роль главных насосов, перека-


чивающих кровь. Правый желудочек получает дезоксигенированную кровь из большого круга кровообращения и перекачивает ее в малый круг. Левый желудочек получает оксигенированную кровь из малого круга кровообращения и перека­чивает ее в большой круг. Четыре клапана обеспе­чивают однонаправленный поток крови через каждую камеру. Насосная функция сердца обес­печивается сложной последовательностью элект­рических и механических явлений.

Сердце состоит из специализированной попе-речнополосатой мышечной ткани, заключенной в соединительнотканный каркас. Клетки сердеч­ной мышцы — кардиомиоциты — подразделяют­ся на предсердные, желудочковые, водителей ритма и проводящей системы. Способность кардиомиоцитов к самовозбуждению и их уни­кальная организация позволяют сердцу функци­онировать как высокоэффективному насосу. Последовательные соединения между отдельны­ми кардиомиоцитами (вставочные диски), имея низкое сопротивление, обеспечивают быстрое и упорядоченное распространение электрическо­го импульса в каждой камере сердца. Волна воз­буждения распространяется от одного предсер­дия к другому и от одного желудочка к другому по проводящим путям. Связь между предсердия­ми и желудочками осуществляется не непосред­ственно, а через АВ-узел, поэтому возбуждение передается с задержкой. За счет этого происхо­дит наполнение желудочка при сокращении предсердия.


Потенциалы действия кардиомиоцитов

Мембрана кардиомиоцита проницаема для ионов К4, но относительно непроницаема для ионов Na'. Мембраносвязанная Ка+4-зависимая АТФ-аза перекачивает ионы K+ внутрь клетки, а ионы Na" из клетки (глава 28). Концентрация К4 внутри клетки выше, чем во внеклеточном про­странстве. Концентрация Na', наоборот, выше во внеклеточном пространстве, чем внутри клетки. Относительная непроницаемость мембраны для кальция поддерживает высокий градиент концен­трации кальция между внеклеточным простран­ством и цитоплазмой. Выход K+из клетки по гра­диенту концентрации приводит к потере суммарного положительного заряда внутри клет­ки. Анионы не сопровождают ионы К4, поэтому возникает электрический потенциал, причем внутренняя поверхность клеточной мембраны за­ряжается отрицательно по отношению к наруж­ной. Таким образом, мембранный потенциал по­коя формируется в условиях равновесия между двумя противоположными силами: движением K+ по градиенту концентрации и электрическим притяжением отрицательно заряженным внутри­клеточным пространством положительно заря­женных ионов К".

В норме мембранный потенциал покоя кардио­миоцита желудочка варьируется от -80 до -90 мВ. Если мембранный потенциал становится менее от­рицательным и достигает пороговой величины, то в кардиомиоците, как и в клетках других возбу­димых тканей (нерв, скелетная мышца), возникает потенциал действия, т. е. происходит деполяриза­ция (рис. 19-1 и табл. 19-1). Потенциал действия вызывает преходящее увеличение мембранного потенциала кардиомиоцита до +20 мВ. В отличие


от потенциала действия нейрона (гл. 14), в потен­циале действия кардиомиоцита за пиком следует фаза плато, которая длится 0,2-0,3 с. Потенциал действия скелетной мышцы и нерва обусловлен ла­винообразным открытием быстрых натриевых ка­налов мембраны, потенциал действия кардиомио­цита вызывается открытием как быстрых натриевых каналов (фаза начальной быстрой репо-ляризации), так и медленных кальциевых каналов (фаза плато). Кроме того, деполяризация сопро­вождается преходящим уменьшением проницае­мости мембраны для калия. В последующем проницаемость мембраны для калия восстанавли­вается, натриевые и кальциевые каналы закрыва­ются и мембранный потенциал возвращается к ис­ходному уровню.

После деполяризации клетки рефрактерны (невосприимчивы) к деполяризующим стимулам до наступления 4-й фазы. Эффективный рефрак-терный период равен минимальному интервалу между двумя импульсами, вызвавшими распрост­ранение возбуждения. В быстропроводящих кар-диомиоцитах эффективный рефракторный период практически равен продолжительности потенциа­ла действия. В медленнопроводящих кардиомио-цитах, напротив, эффективный рефрактерный период может превышать продолжительность по­тенциала действия.





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 1082 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2282 - | 1989 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.