Эта операция наименее очевидна из всех операций реляционной алгебры Кодда и поэтому нуждается в более подробном объяснении. Пусть заданы два отношения – A с заголовком { a 1, a 2,..., a n, b 1, b 2,..., b m} и B с заголовком { b 1, b 2,..., b m}. Будем считать, что атрибут b i отношения A и атрибут b iотношения B (i = 1, 2, …, m) не только обладают одним и тем же именем, но и определены на одном и том же домене. Назовем множество атрибутов { a j} составным атрибутом a, а множество атрибутов{ b j} – составным атрибутом b. После этого будем говорить о реляционном делении «бинарного» отношения A{ a, b } на унарное отношение B{b}.
По определению, результатом деления A на B (A DIVIDE BY B) является «унарное» отношение C{ a }, тело которого состоит из кортежей v таких, что в теле отношения A содержатся кортежи v UNION w такие, что множество {w} включает тело отношения B. Операция реляционного деления не является примитивной и выражается через операции декартова произведения, взятия разности и проекции. Мы покажем это в следующей лекции.
Для иллюстрации этой операции предположим, что в базе данных служащих поддерживаются следующие отношения: СЛУЖАЩИЕ, как оно было определено ранее, и унарное отношение НОМЕРА_ПРОЕКТОВ {ПРО_НОМ}(рис. 4.10). Тогда запрос СЛУЖАЩИЕ DIVIDE BY НОМЕРА_ПРОЕКТОВ выдаст данные обо всех служащих, участвующих во всех проектах (результат операции приведен также на рис. 4.10).
Рис. 3.10. Пример реляционного деления
Заключение
В завершение лекции хочу отметить несколько моментов. Прежде всего, заметим, что алгебра Кодда была представлена не в ее оригинальной форме, а с некоторыми существенными коррективами, внесенными Кристофером Дейтом. С моей точки зрения, одной из наиболее значительных корректив было добавление тривиальной на первый взгляд операции переименования атрибутов. Когда Эдгар Кодд в конце 1960-х гг. впервые опубликовал свою алгебру, основное внимание в ней уделялось тому, как конструируются результирующие множества кортежей, т. е. что представляют собой тела результатов операций. Гораздо меньше внимания уделялось заголовкам отношений-результатов. Фактически Кодд пытался применить для именования атрибутов результатов операций точечную нотацию, используя для уточнения имен атрибутов имена исходных отношений-операндов. При наличии произвольно сложных и длинных алгебраических выражений этот путь, в лучшем случае, вел к порождению длинных и трудных для восприятия имен. Очевидно, что введение операции переименования атрибутов позволяет легко справиться с этой проблемой.
Далее, алгебра Кодда исключительно избыточна. Операции пересечения, декартова произведения и естественного соединения, на самом деле, являются частными случаями одной более общей операции, о которой пойдет речь в следующей лекции. Введение операции декартова произведения в качестве базовой операции алгебры может ввести в заблуждение неопытных студентов и читателей, не осознающих практическую бессмысленность этой операции.
Почему же мы начали обсуждение базовых манипуляционных механизмов реляционной модели данных с этой небезупречной и несколько устаревшей алгебры? Конечно, прежде всего, из уважения к заслугам доктора Эдгара Кодда, вклад которого в современную технологию баз данных невозможно переоценить. Более практические соображения, повлиявшие на наше решение начать обсуждение с алгебры Кодда, заключались в том, что семантика языка SQL во многом базируется именно на этой алгебре, и нам будет проще изучать SQL, предварительно познакомившись с ней.