CISC (Complicated Instruction Set Computer использующий полный набор команд). Традиционная архитектура с широкой системой команд МП.
Типичными представителями являются процессоры на основе x86 команд (исключая современные Intel Pentium 4, Pentium D, Core, AMD Athlon, Phenom, которые являются гибридными)
Характеризуется следующим набором свойств:
§ нефиксированное значение длины команды;
§ арифметические действия кодируются в одной команде;
§ небольшое число регистров, каждый из которых выполняет строго определённую функцию.
Недостатки CISC архитектуры
§ высокая стоимость аппаратной части;
§ сложности с распараллеливанием вычислений.
RISC (Reduced Instruction Set Computer). Архитектура с сокращенным набором команд.
При использовании RISC архитектуры выбор набора команд иструктуры процессора направлены на то, чтобы команды набора выполнялись за один машинный цикл МП. Выполнение более сложных, но редко встречающихся операций обеспечивают подпрограммы, состоящие из набора простых команд.
В ЭВМ с RISC-архитектурой машинным циклом называется время, в течение которого производится выборка двух операндов из регистров, выполнение операции в ALU и запоминание результата в регистре. Большинство команд в RISC-процессорах являются быстрыми командами типа регистр-регистр и выполняются без обращения к ОП. Обращение к памяти производится лишь в командах загрузки регистров из памяти и запоминание их в ОП.
Поскольку одной из главных задач данных МП является уменьшение количества обращений к ОП, то характерная особенность RISC-процессоров - большое количество регистров.
Вследствие сокращенного набора команд (примерно 50-100), небольшого числа способов адресации (2-3 и в основном регистровая) упрощается управляющее устройство МП, которое в этом случае обходится без микропрограммного управления и его устройство управления может быть выполнено на “жесткой” логике. Упрощение структуры МП приводит к появлению свободного места на кристалле для реализации дополнительных схем.
Характерные особенности RISC -процессоров:
1. Одинаковая длина команд (упрощает выборку инструкций из памяти);
2. Использование большого количество регистров, соответственного типа архитектуры (регистровая, ортоганальнорегистровая) - снижает использование ОП;
3. 2-3 способа адресации, в основном регистровая.
4. Устройство управления на жесткой логике.
5. Сокращенный набор команд - 50-100 команд (позволяет обойтись без схемы микропрограммного управления);
6. Простые способы адресации памяти (обеспечивает отсутствие сложных вычислений адреса);
7. Отсутствие совмещенной операции чтения/записи с обработкой данных;
8. Необходимость соответствующей компиляции программ для повышения эффективности;
9. Несовместимость с набором команд CISC МП (непереносимость exe. – файлов).
Например, POWER PC в настоящее время вынужден работать с программами, написанными для CISC – МП. Процессор самостоятельно транслирует сложные команды в ряд простых, что снижает его эффективность.
В настоящее время CISC и RISC сливаются, т.к. большинство CISC МП основаны на ядре RISC.
Достоинства: — высокая тактовая частота; — высокая скорость выполнения команд; — уменьшение площади кристалла: МП POWER PC — 121 мм2, Pentium — 292 мм2. — уменьшение мощности потребления: МП POWER PC — 8,5 Вт, Pentium — 16 Вт. — уменьшение стоимости. | Недостатки: — необходимость моделирования сложных команд; |
Приведите структурную схему CPU i8086. Опишите состав и назначение устройства сопряжения с шиной и устройства обработки.
В КОНСПЕКТЕ!!!
3. Последовательные и параллельные интерфейсы подключения периферийных устройств.
Параллельный порт.
Параллельный порт (сокращенное название – LPT) Иногда его называют Centronics – по имени фирмы-разработчика. Параллельный порт использовался раньше преимущественно для подключения принтеров.
Современные принтеры обычно подключаются к компьютеру через USB, но многие модели имеют разъем для подключения LPT-кабеля (кабеля параллельного порта).
К параллельному порту, кроме принтера, можно подключить:
• некоторые носители данных, например внешние приводы CD-ROM, магнитные накопители «повышенной» емкости (раньше повышенной емкостью считалось 120 Мб);
• стримеры – устройства хранения данных на магнитной ленте. Сейчас они практически не используются, а раньше часто использовались для создания резервных копий на серверах предприятий – ведь магнитная лента стоила копейки по сравнению с другими носителями информации и позволяла записывать большие на то время объемы информации (несколько гигабайтов);
• сканеры старых образцов (современные подключаются через USB).
Режимы работы параллельного порта (режим работы порта обычно выбирается в BIOS):
• SPP (Standard Parallel Port) – стандартный режим параллельного порта. В данном режиме разрешается только односторонняя передача данных от компьютера к периферийному устройству, подключенному к порту. Скорость передачи данных – 200 Кбит/с;
• EPP (Enhanced Parallel Port) – расширенный режим. Разрешен двусторонний обмен данными. Скорость работы – до 2 Мбит/с. Разрешается подключение до 64 периферийных устройств (в цепочку);
• ECP (Extended Capability Port) – порт с расширенными возможностями. Обеспечивает двухсторонний обмен данными со скоростью до 2,5 Мбит/с. Поддерживает сжатие данных по алгоритму RLE. Обычно данный режим (если он поддерживается материнской платой) используют сканеры и другие устройства, передающие большие объемы данных.
Последовательный порт.
Последовательный порт (другие названия – COM, RS-232, serial port), как и параллельный, в устаревающих моделях компьютеров использовался для подключения многих устройств, но чаще всего к нему подключали:
• мышки и другие указательные устройства;
• модемы – даже и сейчас некоторые модемы могут подключаться как к последовательному порту, так и к usb;
• «умные» источники бесперебойного питания – многие источники бесперебойного питания могут сообщать компьютеру о текущем заряде своих батарей. Это очень удобно, поскольку вы знаете, на сколько времени хватит заряда в батареях и как скоро нужно выключить компьютер.
Сейчас последовательный порт преимущественно используется для подключения некоторых внешних модемов и «умных» ИБП.
Есть две разновидности последовательного порта: 9-контактный и 25-контактный. На старых материнских платах обычно присутствуют два разных последовательных порта – «большой» (25 pin) и «маленький» (9 pin). На платах поновее – два «маленьких». А на самых современных платах – всего один последовательный порт (как правило, 9-контактный), оставленный из соображений совместимости.
Максимальная скорость передачи по последовательному порту – 115 200 бит/с. По современным меркам это очень низкая скорость.
К компьютеру можно подключить до четырех последовательных портов, но, как уже было отмечено, доступны бывают один или два порта. В Windows последовательные порты называются COMn, где n – номер порта, например COM1, COM2. Если у вас всего один порт, то он будет называться COM1.
Последовательный порт безнадежно устарел. Еще в 1999 году корпорация Microsoft в спецификации «идеального ПК», которая носила название PC99, рекомендовала отказаться от использования последовательного порта в пользу универсальной последовательной шины USB, что сейчас постепенно и происходит.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8
1. Назовите варианты реализации суперскалярных процессоров и дайте их сравнительную характеристику. Объясните, какие процессоры называют суперскалярными?
Суперскалярные процессоры
Основная идея, определяющая развитие суперскалярных микропроцессоров, состоит в построении возможно большего количества параллельных структур при сохранении традиционных последовательных программ. Это означает, что аппаратура микропроцессора сама, без вмешательства программиста, обеспечивает загрузку параллельно работающих функциональных устройств микропроцессора.
В соответствии с моделью последовательного программирования, программы пишутся в предположении, что команды будут выполнены в том же порядке, в каком они представлены в программе. Однако с целью достижения большей эффективности современные процессоры пытаются выполнять несколько команд одновременно и в некоторых случаях в порядке, отличном от их исходной последовательности в программе.
В современных микропроцессорах широко используется принцип конвейерного выполнения отдельных элементарных операций. Конвейеризация внутренних процессов позволяет выполнять команду за каждый процессорный цикл.
Дальнейшее внедрение принципов конвейеризации привело к появлению класса суперскалярных микропроцессоров. Их отличительной особенностью является возможность выполнения нескольких команд за один процессорный цикл. Такой режим выполнения программы стал возможным благодаря наличию в процессорах нескольких исполнительных устройств.
В число основных блоков суперскалярного микропроцессора входят блок выборки команд и предсказания переходов, блок декодирования команд, анализа зависимостей между командами, переименования и диспетчеризации, блоки регистров и обрабатывающих устройств с плавающей и фиксированной точками, блок управления памятью, а также блок упорядочения выполненных команд.
Ниже рассмотрены основные приемы повышения быстродействия в суперскалярных микропроцессорах.