Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 


Фурье-преобразование непериодической функции




Непериодическая функция не может быть представлена в ряде Фурье, однако она допускает анализ-Фурье с использованием интеграла Фурье. Также непериодическая функция допускает разложение по Фурье – т. е. с представлением в виде с синусоидальным преобразованием; но это разложение проводиться в виде интеграла.

Для одномерной непериодической функции интеграл Фурье будет иметь следующий вид:

; причем выражение может быть записано в виде функции ; т. е.: . И тогда наше выражениеи можно записать как .

Для четной функции мы можем представить выражение более просто:

Или в упрощенной форме:

Фурье-преобразование для непериодической функции уже не имеет дискретного спектра. Этот спектр уже имеет сплошную функцию типа:

Функция также представляется суммой синусоидальных составляющих, бесконечно близких по частоте и их спектральная плотность амплитуд – это амплитуда, отнесенная к единице полосы пространственных частот.

 

Рассмотрим пример преобразования непериодической функции. В качестве преобразования Фурье возьмем П-образный сигнал.

Отсюда берем интеграл:

Вид этой функции будет иметь вид:

Эта функция будет иметь название SINC.

Для дельта-функции спектр будет равен единице при любой частоте.

 

Функция передачи модуляции системы.

Возьмем объект, имеющий синусоидальное распределение интенсивности; то есть, синусоиду (в случае, когда как на картинке – косинусоида):

Модуляция - это отношение:

Или по такой формуле:

Подставляя это все в формулу модуляции, получаем:

Отсюда имеем:

А теперь рассмотрим нашу решетку в системе светорассеяния; то есть в системе функции размытия линии.

Возьмем интеграл свертки:

И подставляем в него выражение .

Получаем: .

А используя выражение , получаем:

.

Принимаем интеграл функции размытия линии за единицу и получаем:

Отсюда

Исходя из геометрии:

имеем:

или

отсюда выражение переходит в

.

 

Было

Стало .

1.Функция осталась синусоидальной; осталась постоянная и та же частота. Изменилось амплитуда решетки, и появился угол , который называется углом фазового сдвига.

 

Итак, у нас изменяется амплитуда и появляется угол фазового сдвига . Поэтому у функции , представляющей собой синусоидальную решетку уменьшается амплитуда и появляется сдвиг; но только в том случае, если .

Совокупность характеристик и называются частотной характеристикой системы, т. е. характеристикой системы по ее размытию, выраженной в частотном пространстве. При этом – это Фурье-преобразование функции размытия линии. Если функция размытия является симметричной – у нее отсутствует фазовый сдвиг; то она называется амплитудной частотной характеристикой.

 

Фазово-частотная характеристика – это зависимость угла сдвига фазы называется от пространственной частоты.

Если увеличивается пространственная частота, то амплитудно-частотная характеристика уменьшается, а фазовая частотная характеристика – наоборот – возрастает.

 

Если система имеет симметричную зону размытия, то есть, четная функция, то фазово-частотная характеристика отсутствует, а остается амплитудно-частотная модуляция.

Функция передачи модуляции характеризует систему с точки зрения размытия узких пучков и является эквивалентной функции размытия линии или краевой функции; прямо с ними связана путем Фурье-преобразования. Т. е. ФПМ есть косинус Фурье-преобразование функции размытия линии. Отличие только в том, что

Переведена в частотное пространство.

 

Сама функция передачи модуляции – это зависимость передачи коэффициента передачи модуляции от пространственной частоты.

Т. е.

Функция передачи модуляции является фильтром пространственных частот, так как низкие частоты она пропускает, а высокие частоты – нет.

При низкой пространственной частоте амплитуда сигнала существенно не изменяется, но при ее увеличении амплитуда уменьшается, приближаясь к нулю(равномерное распределение освещенности), то есть, решетка исчезает.

 

Неудобство ФРТ и ФРЛ состоит в том, что их трудно измерить. Другое неудобство состоит в том, что нужно каждый раз решать интеграл свертки.

 

Краевая функция (knife age)

Функцию передачи модуляции можно оценивать путем отношения амплитуды сигнала на выходе к амплитуде сигнала на входе или амплитуды изображения к амплитуде объекта:

 

Для измерения этой функции передачи модуляции нужно взять несколько решеток с разной пространственной частотой. И по ним находим дискретные точки.

 

Можно сделать так: берем все амплитуды, при чем самой широкой амплитуды приравниваем к единице; а остальные подгоняем под нее.

 

Все эти измерения ФПМ можно перевести в одномерную форму. А именно – методом сканирования наше пространственное изображение мы переводим в серию электрических сигналов; а затем, измеряя эти сигналы на вольтметре, получая пиковые значения амплитуд, считаем их.

 

Радиальная мира (несинусоидальная).

 

Преимущества использования функции передачи модуляции.

  1. Может разлагаться в ряд Фурье.
  2. При перемещении от периферии к центру будет меняться пространственная частота.
  3. Если система у нас состоит из нескольких звеньев и все эти звенья линейные, то ФПМ можно найти простым перемножением отдельных звеньев ФПМ.

Например, если у нас имеется фотоаппарат и мы знаем объектива и пленки; то систему мы получим:

А именно: . Затем:

Или так:

 

 





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 921 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2375 - | 2257 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.