Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Электрохимическая коррозия




Электрохимическая коррозия — самопроизвольный окислительно-восстановительный процесс разрушения металлов и сплавов под влиянием внешних факторов, в котором, в отличие от химической коррозии, наблюдается направленное движение электронов от окисляемого металла к окислителю.

Электрохимическая коррозия возникает, когда соприкасаются два металла различной активности. Различие в энергиях ионизации и в величине сродства к электрону заставляет электроны переходить от более активного металла к менее активному, что и запускает процесс электрохимической коррозии.

Механизм электрохимической коррозии. Процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие процессы:

1) анодный процесс — переход ионов окисленного металла в раствор, сопровождающийся гидратацией (сольватацией):

Ме + n Н2O → Ме n +· nН2O + ;

2) омический процесс — перетекание освободившихся электронов от анодных участков к катодным и движение ионов
в растворе;

3) катодный процесс — ассимиляция электронов каким-либо окислителем, при этом происходит катодное восстановление
окислителя Ох:

Ох + → Red.

Окислителями при коррозии служат молекулы кислорода О2, хлора Cl2, ионы Н+, Fe3+, NO3 и др. Наиболее часто при коррозии в нейтральной и щелочной среде наблюдается восстановление кислорода:

О2 + 2Н2O + 4 ē → 4OН,

а в кислой среде — выделение водорода:

+ + 2 ē → Н2↑.

Коррозия с участием молекулярного кислорода называется коррозией с кислородной деполяризацией. Коррозия с участием ионов водорода называется коррозией с водородной деполяризацией.

Кроме электрохимических реакций при коррозии обычно протекают вторичные химические процессы, например взаимодействие образующихся ионов металла с гидроксид-ионами, концентрация которых повышается в результате катодных реакций:

Me n + + n OH= Ме(OН) n .

  Рис. 5. Атмосферная коррозия в результате контакта меди и железа

Например, если железо находится в контакте с медью в атмосфере влажного воздуха (рис. 5), то менее активный металл медь выступает в роли катода, на котором происходит восстановление окислителя, а материал анода окисляется. Возникает гальванопара, при работе которой происходят процессы:

анод Fe0 – 2 ē → Fe2+;

катод О2 + 2Н2O +4 ē → 4OН.

Далее происходят вторичные процессы:

Fe2+ +2OH ←→ Fe(OH)2;

4Fe(OH)2 +O2 + H2O ←→ 4Fe(OH)3;

2Fe(OH)3 ←→ Fe2O3 + 3H2O.

Образующийся гидроксид железа (II) легко окисляется кислородом воздуха, что в конечном итоге приводит к образованию ржавчины m Fe2O3· n FeO· p H2O.

Образование гальванического элемента (гальванопары) из двух различных по активности металлов приводит к коррозии более сильной, чем для исходного активного металла. Например, цинк в растворе соляной кислоты (Е 0Zn2+/Zn0= – 0,762 B) реагирует с выделением водорода:

Zn + 2HCl = ZnCl2 +H2↑;

или в ионном виде:

Zn + 2H+ = Zn2++ H2↑;

но постепенно изолируется от раствора мелкими пузырьками образовавшегося газа, в результате чего его дальнейшее растворение прекращается.

Медь с разбавленной соляной кислотой не реагирует, так как находится в ряду напряжений после водорода, её стандартный электродный потенциал Е 0Cu2+/Cu0= +0,34 B. Но цинк в контакте с медью образует в разбавленной соляной кислоте коррозионную гальванопару:

(–) Zn│HCl│Cu (+).

В кислой среде наблюдается электрохимическая коррозия Zn с водородной деполяризацией, в которой роль анода играет более электроотрицательный (более активный) металл — цинк, так как

Е 0Zn2+/Zn0= – 0,762 B, в то время как Е 0Cu2+/Cu0= +0,34 B.

 

В процессе коррозии цинк растворяется:

 

анод: Zn – 2 ē → Zn2+ (окисление);

 

омический процесс — переход электронов с анода на катод:

 

Zn 2 ē Cu;

 

катод: 2H+ + 2 ē → H2 (на поверхности меди).

 

Продукт коррозии в кислой среде — хлорид цинка:

Zn2+ + 2Cl = ZnCl2.

 

Очень часто электрохимическая коррозия возникает, когда металл содержит вкрапления металла меньшей активности или неметаллические, но, вместе с тем, токопроводящие включения (как, например, происходит в стали, где есть многочисленные включения карбида железа FeC3), становящиеся катодными участками электрохимической коррозии.

В качестве примера рассмотрим железо, которое в качестве примеси содержит включения меди (рис. 6). Вся конструкция погружена в разбавленный раствор соляной кислоты HCl. На поверхности меди происходит восстановление окислителя, а материал анода окисляется и растворяется:

HCl ←→ H+ + Cl. Анод Fe0 – 2 ē → Fe2+; Fe2+ +2Cl ←→ FeCl2. Катод H+ + ē → Н0; 2H0 ←→ H2↑.  
Рис. 6. Коррозия железа с включениями меди

 

Электрохимическая коррозия и ЭДС гальванопары. Возможность протекания коррозии может быть установлена по знаку ЭДС образующегося гальванического элемента. Если ЭДС > 0, то коррозия возможна. ЭДС равна разности потенциалов окислителя и восстановителя (катода и анода), поэтому коррозия возможна при условии, что потенциал катода (окислителя) положительнее потенциала анода (восстановителя). Если на аноде идет растворение металла, то должно быть Е Ох > Е Me n +/Me0.

Потенциал кислородного электрода при 298 К описывается уравнением:

Е 0O2/OH= 1,23 – pH + lg P O2.

Потенциал водородного электрода описывается уравнением:

Е 02H+/H2= 0,00 – pH + lg P H2.

Графики зависимостей приведены на рис. 7, по ним можно определить возможность протекания коррозии различных металлов в водных средах.

Если потенциал металла положительнее потенциала кислородного электрода (который равен +1,2 В в кислой среде при pH = 1 и составляет около +0,8 В в нейтральной среде при pH = 7), то коррозия металла невозможна (область III).

 

Рис. 7. Зависимость потенциала кислородного (линия 1) и водородного (линия 2) электродов от значения pH среды при P O2и P H2= 1 атм

 

Если потенциал металла положительнее потенциала водородного электрода (последний равен нулю в кислых средах при pH = 1 и составляет около – 0,41 В в нейтральной среде при pH = 7) и отрицательнее потенциала кислородного электрода (область II), то коррозия возможна с поглощением кислорода и невозможна с выделением водорода.

Если потенциал металла отрицательнее потенциала водородного электрода (область I), то возможна коррозия как с поглощением кислорода, так и с выделением водорода. К таким металлам относятся щелочные, щелочноземельные, алюминий, цинк, и др.

Скорость электрохимической коррозии. Действие гальванических элементов в значительной мере зависит от поляризации и деполяризации. При этом может происходить как поляризация анода, которая выражается в том, что его потенциал становится более положительным, так и поляризация катода, вызываемая смещением его потенциала в отрицательную сторону.

Поляризация снижает скорость коррозии во много раз. Без поляризации многие металлы, в том числе и железо, корродировали бы с такой высокой скоростью, что потеряли бы свое техническое значение.

Скорость электрохимической коррозии можно определить по формуле:

,

где I — сила тока, величина которого указывает на скорость коррозии; R — омическое сопротивление раствора электролита; Па — поляризация анода, Пк — поляризация катода; Е — электродвижущая сила.

В зависимости от того, какая из величин (R, Па, Пк) оказывает ограничительное действие на скорость процесса, различают коррозию с различным контролем:

1) R >>(Пак) — омический контроль;

2) Пк>>(Rа) — катодный контроль;

3) Па>>(R +Пк) — анодный контроль.

Контролирующая стадия является лимитирующей для всего процесса, т.е. ограничивает скорость коррозии в целом, так как протекает медленнее других. Возможен и смешанный контроль, когда слагаемые в знаменателе приблизительно равны по величине.

 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Содержание работы:

1. После ознакомления с теоретическим материалом выполнить опыты и записать наблюдения.

2. Во всех опытах записать происходящую окислительно-восстановительную реакцию и процессы окисления и восстановления. Во втором и третьем опытах составить схему образующихся гальванических элементов (гальванопар).

 





Поделиться с друзьями:


Дата добавления: 2016-10-07; Мы поможем в написании ваших работ!; просмотров: 866 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2418 - | 2130 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.