Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Случайные события, случайные величины»




 

Ижевск 2011


 

 

УДК

 

 

Типовые расчеты

по курсу «Высшая математика»

раздел «Теория вероятности и математическая статистика»

 

П.А. Стаханова, старший преподаватель кафедры ВМ,

 

 

Рецензент: М.И. Пономарев, доцент кафедры ВМ.

 

Типовой расчет содержит 30 вариантов по 14 задач в каждом и предназначен для студентов любых специальностей, изучающих теорию вероятности в рамках общего курса высшей математики. Данный типовой расчет содержит задания, разработанные для усвоения тем «Случайные события, случайные величины».

Объем и характер типового задания соответствует рабочим программам по высшей математике для большинства специальностей ИжГТУ и предназначен для лучшего усвоения студентами курса высшая математика и интенсификации самостоятельных занятий.

 

В данном пособии представлена также необходимая для выполнения типового расчета теоретическая информация и примеры ее применения.

В конце приводится список литературы, которую можно порекомендовать студентам для изучения данного раздела математики.

 

© Стаханова П.А. 2011

© Издательство ИжГТУ, 2011

 

 

Методические указания к Типовому расчету №1 по теме

«Случайные события, случайные величины».

В соответствии с учебным планом и рабочей программой по По дисциплине «Теория вероятностей, математическая статистика и случайные процессы» направления 230100.62 – «Информатика и вычислительная техника» дневной формы обучения каждый студент должен выполнить два типовых расчета в III семестре 2 курса по курсу теории вероятностей и математической статистики. В данной методичке представлены материалы первого типового расчета по теме «Случайные события, случайные величины».

Типовой расчет №1 «Случайные величины, законы их распределения и числовые характеристики» содержит 14 заданий. Первые четыре задания носят комбинаторный характер; следующее задание связано с непосредственным вычислением вероятности и с применением формул сложения и умножения; задание 7 – геометрическая вероятность; 8 задача связана с применением формулы полной вероятности и формулы Байеса; 9-11 задачи связаны с повторными независимыми испытаниями, три оставшиеся задачи посвящены случайным величинам, законам распределения случайных величин и их числовым характеристикам. Задания контрольной работы охватывают следующие разделы теории вероятностей:

- комбинаторика;

- непосредственное вычисление вероятности случайного события;

- геометрическое определение вероятности;

- формулы суммы и произведения вероятности;

- формулы полной вероятности и формулы Байеса;

– повторные независимые испытания: основные понятия, формула Бернулли, формулы Муавра – Лапласа (локальная и интегральная), формула Пуассона, условия применения указанных формул;

– случайные величины: понятие случайной величины, виды случайных величин (дискретные и непрерывные), способы задания случайных величин (закон распределения, функция распределения и плотность распределения (для непрерывных случайных величин));

– числовые характеристики случайной величины: математическое ожидание, дисперсия, начальные и центральные моменты случайных величин;

– некоторые виды распределений случайных величин: распределения дискретных случайных величин (биномиальное, распределение Пуассона, геометрическое), распределения непрерывных случайных величин (равномерное, показательное, нормальное);

– предельные теоремы теории вероятностей.

 

Перед выполнением типового расчета необходимо изучить соответствующие разделы литературы (/3/ гл. 5 § 1-3; гл.6 § 1-8; гл. 7 § 1-5; гл. 8 § 1-5, 7, 10; гл. 9 § 1-6; гл. 10 § 1-3; гл. 11 § 1-4, 6; гл. 12 § 2-8; гл. 13 § 1-3) и закрепить с помощью упражнений для самостоятельной работы основные понятия, определения и методы теории вероятностей.

 

Так же перед решением заданий рекомендуется ознакомиться со всеми примерами, рассмотренными ниже. По каждому заданию типового расчета в методических указаниях приводится основной теоретический материал и разбирается несколько типовых примеров.

 

Тема 1

Комбинаторика.

Задачи 1-4

Перестановки - это выборки (комбинации), состоящие из n элементов и отличающиеся друг от друга порядком следования элементов.

; ;

перестановки с повторениями .

Размещениями из n элементов по k элементов будем называть упорядоченные подмножества, состоящие из k элементов, множества, состоящего из n элементов.(порядок важен). ; размещения с повторениями . Одно размещение от другого отличается только не только составом выбранных элементов, но и порядком их расположения.

 

Сочетаниями из n элементов по m элементов будем называть любое подмножество, состоящие из m элементов, множества, состоящего из n элементов. (порядок не важен). ; сочетания с повторениями .

Одно сочетание от другого отличается только составом выбранных элементов.

Сложная выборка = .

Решения задач:

1. Сколько существует пятизначных чисел, состоящих из цифр 7,8,9, в которых цифра 8 повторяется 3 раза, а цифры 7 и 9 по одному разу.

Решение. Каждое пятизначное число отличается от другого порядком следования цифр, причемn1=1, n2=3, а n3=1, а их количество равна 5, т.е. является перестановкой с повторениями из 5 элементов. Их число находим по формуле (3) .

2. На карточках написаны буквы М,А,Т,Е,М,А,Т,И,К,А. Сколько различных 10-ти буквенных «слов» можно составить из этих карточек? (здесь и далее словом считается любая последовательность букв русского алфавита)

Решение. Перестановка двух букв М, осуществляемая Р2= 2 способами, трех букв А, осуществляемая Р3= 3!=6 способами и перестановка двух букв Т, осуществляемая Р2= 2 способами не меняет составленное из карточек слово. слов.

3. Студенты второго курса изучают 10 различных дисциплин. Определить – сколькими способами можно составить расписание на понедельник, если в понедельник планируется поставить 5 пар?

Решение: Каждый вариант расписания представляет собой выборку 5 элементов из 10, причем эти варианты отличаются друг от друга не только выбором этих дисциплин, но и порядком их следования, т.е. является размещением из 10 элементов по 5. .

4. Сколько существует различных вариантов выбора 4-х кандидатур из 9-ти специалистов для поездки в 4 различных страны?

5. Сколькими способами можно выбрать 4 монеты из четырех пятикопеечных монет и из четырех двухкопеечных монет?

Решение: порядок выбора монет неважен, и примерами соединений могут являться {5,5,5,5}, {2,2,2,2}, {5,2,5,5} и т.д. Это задача о числе сочетаний из двух видов монет по четыре с повторениями.

способов.

6. В кондитерской имеется 5 разных сортов пирожных. Сколькими способами можно выбрать набор из 4 пирожных?

Решение: это задача о числе сочетаний из 5 видов пирожных по 4 с повторениями.

способов

7. Сколько всего чисел можно составить из цифр 1, 2, 3, 4, 5, в каждом из которых цифры расположены в неубывающем порядке?

Решение: это задача о числе сочетаний из 5 цифр по одному, по два, по три, по четыре и по пяти с повторениями в каждом случае.

; ; ;

;

Согласно правилу сложения: 5+15+35+70+126=251 чисел.

 

Решение:.

8. Решить уравнения а) ; б) .

Решение:a) ; ; ; ;

б) ; ; ; .

 

Тема 2





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 421 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2477 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.