Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Распределение среднего арифметического случайных величин




Пусть X1…Xn… - независимые и одинаково распределенные случайные величины с мат.ожиданием miи дисперсией si2. Среднее арифметическое их:

]=nm/n=n

.

При n->∞ -> 0. Среднее арифметическое можно представить: , т.е. можно рассмотреть как сумму случайных величин. Тогда

– в силу центральной предельной теоремы

Теорема Муавра-Лапласа.

Пусть Х – случайная величина, имеющая биномиальное распределение. (q=1-p; n испытаний)

Х – число успехов в n испытаниях по схеме Бернулли

Х=0…n

Введем величину

Причем P[Xi=1]=p M[Xi]=1*p+0*q=p

P[Xi=0]=qD[Xi]=M[Xi2]-p2=p-p2=p(1-p)=pq

X = X1 + … + Xn (они все независимы и имеют одинаковое распределение)

M[X] = M[X1 + … + Xn] = M[X1] + … + M[Xn] = np

D[X] = D[X1 + … + Xn] = D[X1] + … + D[Xn] = npq

Следовательно: X~N(np,npq)

Теорема Муавра-Лапласа позволяет количественно оценить разброс события А в некотором эксперименте, который может повторятся n раз в неизменных условиях. Приблизительное значение p равно значению наблюдаемой относительной частоты появления события А в n экспериментах, причем, чем больше n тем выше относительная точность этого результата.

 

 

№22. Теорема Чебышева и ее обобщение.

Если дисперсии n-независимых случайных величин (X1…Xn) ограничены одной и той же постоянной, то при неограниченном увеличении числа n среднее арифметическое случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий.

Док-во:

По условию: M(X1)=m1… M(Xn)=mn

 

 

 

По первому неравенству Чебышева получаем:

поскольку P>1, то:

Вывод: при достаточно больших n выполнение рассматриваемого неравенства является событием практически достоверным, а неравенства противоположного смысла практически невозможно.

Таким образом предел по вероятности следует понимать не как категорическое отверждение, а как утверждение, вероятность которого гарантируется с вероятностью близкой к 1 (при n->∞)

Таким образом, при большом числе случайных величин практически достоверно, что их средняя случайная величина как угодна мало отличается от неслучаной – среднего математического ожидания, т.е. перестает быть случайной.

Этим заключением обоснован выбор средней арифметической в качестве меры истинного значения мат. ожидания.

Практическое значение:

Пример: Необходимо установить размер страхового взноса, с условием что он(?) сделает выплаты при наступлении страхового случая. Замечание Если все измерения проводятся с одинаковой точностью и дисперсией (D[Xi]=s2), то дисперсия их средней величины

Т.е. средний разброс случайной величины меньше разброса каждого измерения. Увеличивая число измерения можно уменьшить влияния случайных погрешностей (но не систематических)

 

№23. Асимптотическое распределение среднего арифметического независимых случайных величин и относительной частоты.





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 831 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.