Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Прогнозирование по регрессионной модели




Мы получили регрессионную математическую модель и можем прогнозировать процесс путем вычислений. Теперь можно оценить уровень заболеваемости астмой не только для тех значений концентрации угарного газа, которые были получены путем измерений, но и для других значений. Это очень важно с практической точки зрения. Например, если в городе планируется построить завод, который будет выбрасывать в атмосферу угарный газ, то, рассчитав возможную концентрацию газа, можно предсказать, как это отразится на заболеваемости астмой жителей города.

Существует два способа прогнозов по регрессионной модели. Если прогноз производится в пределах экспериментальных значений независимой переменной (в нашем случае это значение концентрации угарного газа — С), то это называется восстановлением значения.

Прогнозирование за пределами экспериментальных дан­ных называется экстраполяцией.

Имея регрессионную модель, легко прогнозировать, производя расчеты с помощью электронной таблицы. Выберем для нашего примера в качестве наиболее подходящей квадратичную зависимость. Построим следующую электронную таблицу:

  А В
  Концентрация угарного газа (мг/куб.м) Число больных астмой на 1 тыс. жителей
    =21,845*А2*А2-106,97*А2+150,21

Подставляя в ячейку А2 значение концентрации угарного газа, в ячейке В2 будем получать прогноз заболеваемости. Вот пример восстановления значения:

 

  А В
  Концентрация угарного газа (мг/куб.м) Число больных астмой на 1 тыс. жителей
     

Заметим, что число, получаемое по формуле в ячейке В2, на самом деле является дробным. Однако не имеет смысла считать число людей, даже среднее, в дробных величинах. Дробная часть удалена — в формате вывода числа указано 0 цифр после запятой.

Экстраполяционный прогноз выполняется аналогично.

 
 

Табличный процессор дает возможность производить экстраполяцию графическим способом, продолжая тренд за пределы экспериментальных данных. Как это выглядит при использовании квадратичного тренда для С = 7 показано на рис. 2.15.

 

Рис. 2.15. Квадратичный тренд с экстраполяцией

 

В ряде случаев с экстраполяцией надо быть осторожным. Применимость всякой регрессионной модели ограничена, особенно за пределами экспериментальной области. В нашем примере при экстраполяции не следует далеко уходить от величины 5 мг/куб. м. Вполне возможно, что далее характер зависимости существенно меняется. Слишком сложной является система «экология — здоровье человека», в ней много различных факторов, которые связаны друг сдругом. Полученная регрессионная функция является всего лишь моделью, экспериментально подтвержденной в диапа­зоне концентраций от 2 до 5 мг/куб. м. Что будет вдали от этой области, мы не знаем. Всякая экстраполяция держится на гипотезе: «предположим, что за пределами экспериментальной области закономерность сохраняется». А если не сохраняется?

Квадратичная модель в данном примере в области малых значений концентрации, близких к 0, вообще не годится. Экстраполируя ее на С = 0 мг/куб. м, получим 150 человек больных, то есть больше, чем при 5 мг/куб. м. Очевидно, это нелепость. В области малых значений С лучше работает экспоненциальная модель. Кстати, это довольно типичная ситуация: разным областям данных могут лучше соответствовать разные модели.

 





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 1827 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.