Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Этапы статистического исследования




Чтобы получить представление о том или ином явлении, сделать выводы, необходимо провести статистическое исследование. Предме­том статистического исследования в здравоохранении и медицине мо­гут быть здоровье населения, организация медицинской помощи, раз­личные разделы деятельности лечебно-профилактических учреждений, факторы внешней среды, оказывающие влияние на состояние здоровья.

Методическая последовательность выполнения статистического исследования складывается из определенных этапов.

1 этап. Составление плана и программы исследования.

2 этап. Сбор материала (статистическое наблюдение).

3 этап. Разработка материала, статистическая группировка и сводка

4 этап. Статистический анализ изучаемого явления, формулировка выводов.

5 этап. Литературная обработка и оформление полученных результатов.

По завершении статистического исследования разрабатываются ре­комендации и управленческие решения, проводится внедрение ре­зультатов исследования в практику, оценивается эффективность.

В проведении статистического исследования важнейшим элементом является соблюдение строгой последовательности в осуществлении названных этапов.

Первый этап статистического исследования - составление плана и программы - является подготовительным, на котором определяется цель и задачи исследования, составляется план и программа иссле­дования, разрабатывается программа сводки статистического мате­риала и решаются организационные вопросы.

Приступая ж статистическому исследованию, следует точно и чет­ко сформулировать цель и задачи исследования, изучить по данной теме литературу.

Цель определяет основное направление исследования и носит, как правило, не только теоретический, но и практический характер. Цель формулируется ясно, четко, недвусмысленно.

Для раскрытия поставленной цели определяются задачи исследова­ния.

Важным моментом подготовительного этапа является разработка организационного плана. Организационный план исследования предус­матривает определение места (административно-территориальных границ наблюдения), время (конкретных сроков осуществления наблю­дения, проведения разработки и анализа материала) и субъекта ис­следования (организаторов, исполнителей, методического и органи­зационного руководства, источников финансирования исследования).

Пл а н иссле д ов а ния включает:

- определение объекта исследования (статистической совокупнос­ти);

- объема исследования (сплошное, несплошное);

- видов (текущее, единовременное);

- способов сбора статистической информации. Программа исследования включает:

- определение единицы наблюдения;

- перечень вопросов (учетных признаков), подлежащих регистра­ции в отношении каждой единицы наблюдения*

- разработку индивидуального учетного (регистрационного) блан­ка с перечнем вопросов и признаков, подлежащих учету;

- разработку макетов таблиц, в которые затем вносятся результа­ты исследования.

На каждую единицу наблюдения заполняется отдельный бланк, он содержит паспортную часть, четко сформулированные, поставленные в определенной последовательности вопросы программы и дату заполне­ния документа.

В качестве учетных бланков могут быть использованы применяе­мые в практике лечебно-профилактических учреждений учетные меди­цинские Формы.

Источниками получения информации могут служить другие медицин­ские документы (истории болезни, и индивидуальные карты амбула­торного больного, истории развития ребенка, истории родов), от­четные формы лечебно-профилактических учреждений и др.

Для обеспечения возможности статистической разработки данных из этих документов производят выкопировку сведений на специально разработанные учетные бланки, содержание которых определяется в каждом отдельном случае в соответствии с задачами исследования.

В настоящее время в связи с машинной обработкой результатов наблюдения с использованием ЭВМ вопросы программы могут быть формализованы, когда вопросы в учетном документе ставятся в виде альтернативы (да, нет), или предлагаются уже готовые ответы, из которых следует выбрать определенный ответ.

На первом этапе статистического исследования наряду с програм­мой наблюдения составляется программ* сводки полученных данных, которая включает установление принципов группировки, выделение группировочных признаков, определение комбинаций этих признаков, составление макетов статистических таблиц.

Второй этап - сбор статистического материала (статистическое наблюдение) - заключается в регистрации отдельных случаев изу­чаемого явления и характеризующих их учетных признаков в регис­трационные бланки. Перед и в ходе выполнения этой работы прово­дится инструктаж (устный или письменный) исполнителей наблюде­ния, обеспечение их формами регистрации.

По времени статистическое наблюдение может быть текущим и еди­новременным.

При текущем набл ю дении явление изучается за какой-то от­дельный период времени (неделю, квартал, год и т.д.) путем пов­седневной регистрации явления по мере возникновения каждого слу­чая. Примером текущего наблюдения является учет числа родившихся, умерших, заболевших, выписанных из стационара и т. п. Так учиты­ваются быстро меняющиеся явления.

При единовременном набл ю дении статистические данные собирают­ся на определенный (критический) момент времени. Единовремен­ным наблюдением являются: перепись населения, изучение физического развития детей, учет больничных коек на коней года, паспорти­зация лечебно-профилактических учреждений и т. д. К этому же виду относятся профилактические осмотры населения. Единовременная ре­гистрация отражает состояние явления на момент изучения. Этот вид наблюдения используется для изучения медленно меняющихся явлений.

Выбор вид наблюдения по времени определяется целью и задачами исследования. Например, характеристику госпитализированных больных можно получить в результате текущей регистрации выбывших из стационара (текущее наблюдение) или путем однодневной перепи­си больных, находящихся в стационаре (единовременное наблюдение).

В зависимости от полноты охвата изучаемого явления различают сплошное и несплошное исследование.

При сплошном исследовании изучаются все входящие в состав со­вокупности единицы наблюдения, т.е. генеральная совокупность. Сплошное исследование проводят с целью установления абсолютных размеров явления, например, общей численности населения, общего количества родившихся или умерших, общего числа заболевших тем или иным заболеванием и др. Сплошной метод применяется и в тех случаях, когда сведения необходимы для оперативной работы (учет инфекционной заболеваемости, нагрузка врачей и др.)

При несплошном исследовании изучается лишь часть генеральной совокупности. Оно подразделяется на несколько видов: анкетное, монографическое, основного массива, выборочное. Самым распростра­ненным в медицинских исследованиях является выборочный метод.

Монографический метод - дает детальное описание отдельных ха­рактерных в каком-либо отношении единиц совокупности и глубокое, всестороннее описание объектов.

Метод основного массива - предполагает изучение тех объектов, в которых сосредоточено значительное большинство единиц наблюде­ния. Недостатком этого метода является то, что остается неохва­ченной исследованием часть совокупности, хотя и небольшая по размерам, но которая может значительно отличаться от основного мас­сива.

Анкетный метод - это сбор статистических данных с помощью спе­циально разработанных анкет, адресованных определенному кругу лиц. Это исследование основано на принципе добровольности, поэто­му возврат анкет зачастую бывает неполным. Нередко ответы на пос­тавленные вопросы носят отпечаток субъективности и случайности. Этот метод применяется для получения приблизительной характеристики изучаемого явления.

Выборочный метод - сводится к исследованию некоторой спе­циально отобранной части единиц наблюдения для характеристики всей генеральной совокупности. Преимуществом этого метода являет­ся получение результатов высокой степени надежности, а также зна­чительно более низкая стоимость. В исследовании занято меньшее число исполнителей, кроме того он требует меньших затрат времени.

В медицинской статистике роль и место выборочного метода осо­бенно велики, поскольку медицинские работники имеют дело обычно только с частью изучаемого явления: изучают группу больных с тем или иным заболеванием, анализируют работу отдельных подразделе­ний и медицинских учреждений, оценивают качество определенных ме­роприятий и т. д.

По способу получения сведений в ходе проведения статистическо­го наблюдения и характеру его осуществления выделяют несколько видов:

1) непосредственное наблюдение (клинический осмотр больных, проведение лабораторных, инструментальных исследований, антропо­метрические измерения и т. п.)

2) социологические методы: метод интервью (очный опрос), анке­тирование (заочный опрос - анонимный или неанонимный) и др.;

3) документальное исследов а ние (выкопировка сведений из учет­но-отчетных медицинских документов, сведения официальной статис­тики учреждений и организаций.)

Третий этап - группировка и сводка материала - начинается с проверки и уточнения числа наблюдений, полноты и правильности по­лученных сведений, выявлении и устранении ошибок, дубликатов за­писей и т. д.

Для правильной разработки материала применяется шифровка пер­вичных учетных документов, т.е. обозначение каждого признака и его группы знаком - буквенным или цифровым. Шифровка - это техни­ческий прием, облегчающий и ускоряющий разработку материала, по­вышающий качество, точность разработки. Шифры - условные обозна­чения - вырабатываются произвольно. При шифровке диагнозов реко­мендуется пользоваться международной номенклатурой и классифика­цией болезней; при шифровке профессий - словарем профессий.

Преимуществом шифровки является то, что при необходимости пос­ле окончания основной разработки можно вернуться к материалу для разработки с целью выяснения новых связей и зависимостей. Зашиф­рованный учетный материал позволяет сделать это легче и быстрее, чем незашифрованный. После проверки проводится группировка призна­ков.

Группировка - расчленение совокупности изучаемых данных на од­нородные, типичные группы по наиболее существенным признакам. Группировка может проводиться по качественным и количественным признакам. Выбор группировочного признака зависит от характера изучаемой совокупности и задач исследования.

Типологическая группировка производится по качественным (опи­сательным, атрибутивным) признакам, например, по полу, профессии, группам болезни, тяжести течения болезни, послеоперационным ос­ложнениям и т. д.

Группировка по количественным (вариационным) признакам прово­дится на основании числовых размеров признака, например, по воз­расту, длительности заболевания, продолжительности лечения и т.д. Количественная группировка требует решения вопроса о величине группировочного интервала: интервал может быть равным, а в ряде случаев - неравный, даже включать так называемые открытые группы.

Например, при группировке по возрасту могут быть определены открытые группы: до 1 года. 50 лет и старше.

При определении числа групп исходят из цели и задач исследова­ния. Необходимо, чтобы группировки могли вскрыть закономерности изучаемого явления. Большое число групп может привести к чрезмер­ному дроблению материала, ненужной детализации. Малое число групп приводит к затушевыванию характерных черт.

Рекомендуется следующее число групп:

Число наблюдений   Число групп
до 40   5-6  
40 - 60   6-8  
60 - 100   7 - 10  
100 - 200   8 - 12  
200 и более   10 - 15  

Закончив группировку материала, приступают к сводке.

С водка - обобщение единичных случаев, полученных в результате статистического исследования, в определенные группы, их подсчет и внесение в макеты таблиц.

Сводку статистического материала проводят при помощи статисти­ческих таблиц. Таблица, не заполненная цифрами, называется макетом.

Статистические таблицы бывают перечневые, хронологические, тер­риториальные.

Таблица имеет подлежащее и сказуемое. Статистическое подлежа­щее обычно размещается по горизонтальным строкам в левой части таблицы и отражает главный, основной признак. Статистическое ска­зуемое размещается слева направо по вертикальным графам и отра­жает дополнительные учетные признаки.

Статистические таблицы делятся на простые, групповые и комби­национные.

В простых таблицах представлено числовое распределение мате­риала по одному признаку, составных частей его (табл.1). Простая таблица содержит обычно простой перечень или итог по всей сово­купности изучаемого явления.

Таблица 1

Распределение умерших в больнице Н. по возрасту

Возраст (лет) Число умерших
0 - 14  
15 - 19  
20-28  
30-38  
40 - 49  
50 - 59  
60 и старше  
Всего  

В групповых таблицах представлено сочетание двух признаков в связи друг с другом (табл.2).

 

Таблица 2

Распределение умерших в больнице Н. по полу и возрасту

Возраст (лет) Пол
мужчины женщины оба пола
0 -14   -  
15-19   -  
20-29      
30-39      
40-49      
50-59      
60 и старше      
Всего      

 

В комбин а ци о нных таблицах дается распределение материала по трем и более взаимосвязанным признакам (Таблица 3).

Таблица 3

Распределение умерших в больнице Н. при разных заболеваниях по возрасту и полу

Диагноз основного заболевания Возраст
0-14 15-19 20-39 40-59 60 и > Всего
м ж м ж м ж м ж м ж м ж м+ж
Болезни сис­темы кровооб. - - - -                  
Травмы и отравления   -   -         -        
Злокачеств. новообразов. - - - - - -              
Другие заб. - - - -                  
Все заболев.   -   -                  

 

При составлении таблиц должны соблюдаться определенные требо­вания:

- каждая таблица должна иметь заголовок, отражающий ее содержание;

- внутри таблицы все графы также должны иметь четкие краткие наз­вания;

- при заполнении таблицы все клетки таблицы должны содержать соответствующие числовые данные. Оставшиеся незаполненными из-за отсутствия данной комбинации клетки таблицы прочеркивают­ся ("-"), а при отсутствии сведений в клетке проставляется "н.с." или "...";

- после заполнения таблицы в нижней горизонтальном ряду и в пос­леднем справа вертикальном столбце подводятся итоги верти­кальных граф и горизонтальных строк.

- таблицы должны иметь единую последовательную нумерацию.

В исследованиях, имеющих небольшой объем наблюдений, сводка проводится вручную. Все учетные документы раскладываются на груп­пы в соответствии с шифром признака. Далее проводится подсчет и запись данных в соответствующую клетку таблицы.

В настоящее время в проведении сортировки и сводки материала широко используются ЭВМ. которые позволяют не только отсортиро­вать материал по изучаемым признакам, но выполнить расчеты пока­зателей.

Четвертый этап - статистический анализ - является ответствен­ным этапом исследования. На этом этапе проводится вычисление ста­тистических показателей (частоты, структуры, средних размеров изучаемого явления),дается их графическое изображение, изучает­ся динамика, тенденции, устанавливаются связи между явлениями. даются прогнозы и т.д. Анализ предполагает интерпретацию получен­ных данных, оценку достоверности результатов исследования. В зак­лючение делаются выводы.

Пятый этап - литературная обработка является заключительным. Он предполагает окончательное оформление результатов статистичес­кого исследования. Результаты могут быть оформлены в виде статьи, отчета, доклада, диссертации и др. Для каждого вида оформления существуют определенные требования, которые должны соблюдаться при литературной обработке результатов статистического исследования.

Результаты медико-статистического исследования внедряются в практику здравоохранения. Возможны различные варианты использова­ния результатов исследования: ознакомление с результатами широ­кой аудитории медицинских и научных работников; подготовка ин­структивно-методических документов; оформление рационализаторско­го предложения и другие.

СТАТИСТИЧЕСКИЕ ВЕЛИЧИНЫ

Для сравнительного анализа статистических данных используется статистические величины: абсолютные, относительные, средние.

Абсолютные величины

Абсолютные величины, полученные в сводных таблицах в ходе ста­тистического исследования, отражают абсолютный размер явления (число лечебно-профилактических учреждений, число коек в больнице, численность населения, число умерших, родившихся, заболевших и т.д.). Ряд статистических исследований завершается получением аб­солютных величин. В некоторых случаях они могут быть использова­ны для анализа изучаемого явления, например, при изучении редких явлений, при необходимости знать точный абсолютный размер явле­ния, при необходимости обратить внимание на отдельные случаи изу­чаемого явления и др. При малом числе наблюдений, в том случае, когда не требуется определения закономерности, также могут ис­пользоваться абсолютные числа.

В значительной части случаев абсолютные величины не могут быть использованы для сравнения с данными других исследований. Для этого служат относительные и средние величины.

Относительные величины

Относительные величины (показатели, коэффициенты) получают­ся в результате отношения одной абсолютной величины к другой. Наиболее часто используются следующие показатели: интенсивные, экстенсивные, соотношения, наглядности.

Интенсивные - показатели частоты, интенсивности, распростра­ненности явления в среде, продуцирующей данное явление. В здравоохранении изучаются заболеваемость, смертность, инвалидность, рождаемость и другие показатель здоровья населения. Средой, в ко­торой происходят процессы, является население в целом или его от­дельные группы (возрастные, половые, социальные, профессио­нальные и др.). В медико-статистических исследованиях явление представляет собой как бы продукт среды. Например, население (среда) и заболевшие (явление); больные (среда) и умершие (яв­ление) и т. д.

Интенсивный показатель = Абсолютный размер явления * 100 (1000,10000,100000)
Абсолютный размер среды, продуцирующей данное явление

Величина основания выбирается в соответствии в величиной пока­зателя - на 100, 1000, 10000, 100000, в зависимости от этого показатель выражается в процентах, промилле, продецимилле,просан­тимилле.

Вычисление интенсивного показателя производится следующим об­разом: например, в Иране в 1995г. проживало 67283 тыс. жителей, в течение года умерло 380200 человек.

Показатель смертности = 380200 * 1000   = 5,8%.
 

Интенсивные показатели могут быть общими и специальными.

Общие интенсивные показатели характеризуют явление в целом. например, общие показатели рождаемости, смертности, заболеваемос­ти, вычисленные ко всему населению административной территории.

Специальные интенсивные показатели (погрупповые) применяются для характеристики частоты явления в различных группах (заболе­ваемость по полу, возрасту, смертность среди детей в возрасте до 1 года, летальность по отдельным нозологическим Формам и т.д.).

Интенсивные показатели применяются: для определения уровня. частоты, распространенности явления; для сравнения частоты явле­ния в двух различных совокупностях; для научения изменений часто­ты явления в динамике.

Экстенсивные - показатели удельного веса, структуры, характе­ризуют распределение явления на составные части, его внутреннюю структуру. Вычисляются экстенсивные показатели отношением частиявления к целому и выражаются в процентах или долях единицы.

Экстенсивный показатель = Абсолютный размер части явления * 100
Абсолютный размер явления в целом  

Вычисление экстенсивного показателя производится следующим образом: например, в Греции в 1997 г. функционировало 719 больниц, в том числе 214 - больниц общего профиля.

Удельный вес больниц общего профиля = 214 * 100   = 29.8%
 

Экстенсивные показатели используются для определения структу­ры явления и сравнительной оценки соотношения составляющих его частей. Экстенсивные показатели всегда взаимосвязаны между собой, т. к. их сумма всегда равна 100 процентам: так, при изучении структуры заболеваемости удельный вес отдельного заболевания мо­жет возрасти при его истинном росте; при одном и том же его уров­не, если число других заболеваний снизилось; при снижении числа данного заболевания, если уменьшение числа других заболеваний происходит более быстрыми темпами.

Соотношения - представляют собой соотношение двух самостоя­тельных, независимых друг от друга, качественно разнородных вели­чин. К показателям соотношения относятся показатели обеспеченнос­ти населения врачами, средними медицинскими работниками, больнич­ными койками и др.

Показатель соотношен. = Абсолютный размер явления * 100 (1000, 10000, 100000)
Абс. размер среды, не продуцирующей данное явление  

Вычисление показателя соотношения производится следующим обра­зом: например, в Ливане с численностью населения 3789 тыс. жите­лей в медицинских учреждениях в 1996 году работали 3941 врачей.

Показатель обеспеченности населения врачами = 3941 * 10000   = 10,4 о/ооо
 

Наглядности - применяются с целью более наглядного и дос­тупного сравнения статистических величин. Показатели наглядности представляют удобный способ преобразования абсолютных, относи­тельных или средних величин в легкую для сравнения Форму. При вы­числении этих показателей одна из сравниваемых величин приравни­вается к 100 (или 1), а остальные величины пересчитываются соответственно этому числу.

Показатель наглядности = Явление 1 * 100
Такое же явление из ряда сравниваемых, принятое за 100

Вычисление показателей наглядности производится следующим об­разом: например, численность населения Иордании составила: в 1994г. - 4275 тыс. человек, в 1995г. - 4440 тыс. человек, в 1996г.- 5439 тыс. человек.

Показатель наглядности: 1994г.-100%;

1995г. = 4460 *100 = 103.9%;
 
         
1996г. = 5439*100 = 127.2%
 

Показатели наглядности указывают, на сколько процентов или во сколько раз произошло увеличение или уменьшение сравниваемых ве­личин. Показатели наглядности используются чаше всего для сравне­ния данных в динамике, чтобы представить закономерности изучае­мого явления в более наглядной форме.

При пользовании относительными величинами могут быть допущены некоторые ошибки. Приведем наиболее частые из них:

1. Иногда судят об изменении частоты явления на основе экстенсив­ных показателей, которые характеризуют структуру явления, а не его интенсивность.

2. Нельзя складывать и вычитать статистические показатели, кото­рые рассчитаны из совокупностей, имеющих разную численность, ибо это приводит к грубым искажениям показателя.

3. При расчете специальных показателей следует правильно выби­рать знаменатель для расчета показателя: например, показатель послеоперационной летальности необходимо рассчитывать по отно­шению к оперированным, а не всем больным.

4. При анализе показателей следует учитывать Фактор времени:

нельзя сравнивать между собой показатели, вычисленные за раз­личные периоды времени: например, показатель заболеваемости за год и за полугодие, что может привести к ошибочным суждениям. 5. Нельзя сравнивать между собой общие интенсивные показатели, вычисленные из неоднородных по составу совокупностей, пос­кольку неоднородность состава среды может влиять на величину показателя.

Средние величины

Средние величины дают обобщающую характеристику статистичес­кой совокупности по определенному изменяющемуся количественному признаку.

Средняя величина характеризует весь ряд наблюдений одним чис­лом, выражающим общую меру изучаемого признака. Она нивелирует случайные отклонения отдельных наблюдений и дает типичную харак­теристику количественного признака.

Одним из требований при работе со средними величинами являет­ся качественная однородность совокупности, для которой рассчиты­вается средняя. Только тогда она будет объективно отображать ха­рактерные особенности изучаемого явления. Второе требование зак­лючается в том, что средняя величина только тогда выражает типич­ные размеры признака, когда она основывается на массовом обобще­нии изучаемого признака, т.е. рассчитывается на достаточном чис­ле наблюдений.

Средние величины получаются из рядов распределения (вариа­ционных рядов).

Вариационный ряд - ряд однородных статистических величин, ха­рактеризующих один и тот же количественный учетный признак, отли­чающихся друг от друга по своей величине и расположенных в опре­деленном порядке (убывания или возрастания).

Элементами вариационного ряда являются:

Варианта - v - числовое значение изучаемого меняющегося коли­чественного признака.

Частота - p (pars) или f (frequency) - повторяемость вариант в вариационном ряду, показывающая, как часто встречается та или иная варианта в составе данного ряда.

Общее число наблюдений - n (numerus) - сумма всех частот: n=ΣΡ. Если общее число наблюдений более 30,статистическая выборка считается большой, если n меньше или равно 30 - малой.

Вариационные ряды бывают прерывные (дискретные), состоящие из целых чисел, и непрерывные, когда значения вариант выражены дроб­ным числом. В прерывных рядах смежные варианты отличаются друг от друга на целое число, например: число ударов пульса, число дыха­ний в минуту, число дней лечения и т.д. В непрерывных рядах ва­рианты могут отличаться на любые дробные значения единицы. Вариационные ряды бывают трех видов. Простой - ряд, в котором каждая варианта встречается один раз, т.е. частоты равны единице.

О бычный - ряд, в котором варианты встречаются более одного ра­за.

Сгруппиров а нный - ряд. в котором варианты объединены в группы по их величине в пределах определенного ин­тервала с указанием частоты повторяемости всех вариант, входящих в группу.

Сгруппированный вариационный ряд используют при большом числе наблюдений и больном размахе крайних значений вариант.

Обработка вариационного ряда заключается в получении парамет­ров вариационного ряда (средней величины, среднего квадратичес­кого отклонения и средней ошибки средней величины).

Виды средних величин.

В медицинской практике наиболее часто используются следующие средние величины: мода, медиана, средняя арифметическая. Реже применяются другие средние величины: средняя геометрическая (при обработке результатов титрования антител, токсинов, вакцин); средняя квадратическая (при определении среднего диаметра среза клеток, результатов накожных иммунологических проб); средняя кубическая (для определения среднего объема опухолей) и другие.

Мода (Mo) - величина признака, чаще других встречающаяся в со­вокупности. За моду принимают варианту, которой соответствует наибольшее количество частот вариационного ряда.

Медиана (Me) - величина признака, занимающая срединное значе­ние в вариационном ряду. Она делит вариационный ряд на две рав­ные, части.

На величину моды и медианы не оказывают влияния числовые зна­чения крайних вариант, имеющихся в вариационном ряду. Они не всегда могут точно характеризовать вариационный ряд и применяют­ся в медицинской статистике относительно редко. Более точно ха­рактеризует вариационный ряд средняя арифметическая величина.

С редняя арифметическая (М, или ) - рассчитывается на осно­ве всех числовых значений изучаемого признака.

В простом вариационном ряду, где варианты встречаются только по одному разу, вычисляется средняя арифметическая простая по формуле:

 

, где V - числовые значения вариант,

n - число наблюдений,

Σ - знак суммы

В обычном вариационном ряду вычисляется средняя арифметичес­кая взвешенная по формуле:

 

, где V - числовые значения вариант.

Ρ - частота встречаемости вариант.

n - число наблюдений.

S - знак суммы

 

Пример расчета средней арифметической взвешенной приведен в таблице 4.

Таблица 4

Определение средней длительности лечения больных в специализированном отделении больницы

Число дней, V   Число больных, Ρ   V * Ρ  
     
     
     
     
     
     
     
     
     

n=95 S=1900,

В приведенном примере модой является варианта, равная 20 дням, поскольку она повторяется чаще других - 29 раз. Мо = 20. Порядковый номер медианы определяется по формуле:

Место медианы приходится на 48-ю варианту, числовое значение ко­торой равно 20. Средняя арифметическая, рассчитанная по формуле, равна также 20.

Средние величины являются важными обобщающими характеристика­ми совокупности. Однако за ними скрываются индивидуальные значе­ния признака. Средние величины не показывают изменчивости, колеб­лемости признака.

Если вариационный ряд более компактен, менее рассеян и все от­дельные значения расположены вокруг средней, то средняя величина дает более точную характеристику данной совокупности. Если вариа­ционный ряд растянут, отдельные значения значительно отклоняются от средней, т.е. имеется большая вариабельность количественного признака, то средняя менее типична, хуже отражает в целом весь ряд.

Одинаковые по величине средние могут быть получены из рядов с различной степенью рассеяния. Так, например, средняя длительность лечения больных в специализированной отделении больницы также бу­дет равна 20, если все 95 больных находились на стационарном ле­чении по 20 дней. Обе вычисленные средние равны между собой, но получены из рядов с разной степенью колеблемости вариант.

Следовательно, для характеристики вариационного ряда, помимо средней величины, необходима другая характеристика, позволяющая оценить степень его колеблемости.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 1412 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2196 - | 2139 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.