Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основы релятивистской механики




1. Уравнение динамики

Уравнение второго закона Ньютона в классической механике инвариантно, не изменяет вида, при переходе от одной инерциальной системы отсчета к другой. Действительно, стоит в уравнение второго закона подставить преобразования Галилея , при постоянной скорости V 0, при t=t, как получим инвариантное уравнение . (Здесь введен индекс «ноль» для обозначения массы тела при малой скорости движения). Но в релятивистской механике преобразования Галилея неверны, следовательно, уравнение второго закона Ньютона следует преобразовать.

Если в классическом определении импульса заменить время собственным временем частицы, получим, что релятивистский импуль с определяется соотношением

 

. (13.7)

 

Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона , но только под понимается релятивистский импульс частицы (13.7). Следовательно, основное уравнение динамики принимает вид

 

. (13.8)

 

Так как релятивистский импульс не пропорционален скорости частицы, то ускорение и сила оказываются не пропорциональными друг другу, не коллинеарными векторами.

Лоренц, при изучении движения электрона с учетом создаваемого им электромагнитного поля, получил, что его масса возрастает с увеличением скорости

. (13.9)

Причиной этого являлось увеличение инертности электрона из-за возникающего электромагнитного поля, которое по правилу Ленца тормозит движение электрона. Уравнение (13.9) проверено экспериментально по отклонению релятивистских электронов в поперечных электрических и магнитных полях, применяется при расчетах движения заряженных частиц в синхрофазотроне. При приближении скорости частиц к скорости света их масса беспредельно возрастает. Превысить скорость света невозможно.

2. Релятивистское выражение для энергии

В релятивистской механике обязан выполняться закон сохранения энергии.

Получим формулу кинетической энергии. Кинетическая энергия тела определяется через работу внешней силы Т=A, необходимую для сообщения телу заданной скорости. Чтобы разогнать частицу массы m 0из состояния покоя до скорости V под действием постоянной силы F, эта сила должна совершить работу

 

. (13.10)

 

Здесь . Под знаком интеграла стоят две переменные: масса и скорость. Исключим скорость по уравнению зависимости массы от скорости (13.9), возведя его во вторую степень и затем, дифференцируя квадрат скорости, . Подставим преобразования под знак интеграла кинетической энергии . Видно, что два последних члена сокращаются. После интегрирования в пределах от массы покоя до релятивистской массы , получим

. (13.11)

 

Эйнштейн интерпретировал первый член этого выражения как полную энергию Е движущейся частицы . Неподвижная частица обладает энергией , которая называется энергией покоя. Она представляет собой внутреннюю энергию частицы.

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи. Формула Эйнштейна

(13.12)

 

выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии.

Закон экспериментально подтвержден для ядерных реакций, в которых происходит значительное выделение энергии , так что изменение массы можно измерить с высокой точностью. В реакции аннигиляции электрона и его античастицы позитрона с образованием фотонов происходит не только превращения энергии одного вида (энергия покоя) в другой (энергия движения), но и изменяется форма существования материи: вещество превращается в электромагнитное поле. Обратная реакция распада γ-фотона в электрон-позитронную пару происходит только при энергии фотона не менее 1,02 МэВ, равной энергии покоя частиц.

Найдем выражение для полной энергии через импульс частицы. Для этого из выражения для импульса (13.6) и полной энергии (13.8) исключим скорость V. В результате получим

 

(13.13)

 

Полученное соотношение (13.13) показывает, что частица может иметь энергию и импульс, но не иметь массы (m =0). Для таких частиц связь между энергией и импульсом выражается простым соотношением Е=рс. К частицам без массы покоя относятся фотоны и, возможно, нейтрино. Фотон – это электромагнитная волна, излученная атомом и, естественно, что волна не может покоиться. Во всех инерциальных системах отсчета они движутся с предельной скоростью с.

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 586 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2429 - | 2175 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.