Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Описание установки и вывод расчетной формулы. Для выполнения работы используются пружинный маятник, закрепленный на штативе, набор грузиков, секундомер




 

Для выполнения работы используются пружинный маятник, закрепленный на штативе, набор грузиков, секундомер, мерная линейка.

а б в

Рисунок 1 Положения пружинного маятника: а – без грузика; б – с грузиком в отсутствии колебаний; в – при смещении x грузика от положения равновесия в процессе колебаний

 

Зависимость периода колебаний T от параметров пружинного маятника: .

Отсюда жесткость пружины выразится как:

. (4)

В реальных колебательных системах всегда часть энергии расходуется на работу по преодолению сил трения (например, силы сопротивления воздуха, сил внутреннего трения и т.д.). При этом амплитуда колебаний A уменьшается со временем до нуля. Такие колебания называются затухающими.

При рассмотрении колебания в среде (в том числе и в воздухе), обладающей вязкостью, необходимо учесть силу сопротивления среды, значение которой прямо пропорционально скорости:

, (5)

где r называется коэффициентом сопротивления среды;

– скорость колеблющегося тела.

В этом случае второй закон Ньютона принимает вид:

. (6)

Перепишем (6), обозначив r / m = 2 b и k / m = w 02:

, (7)

где b называется коэффициентом затухания.

Формула (7) является дифференциальным уравнением затухающих колебаний. При его решении можно рассмотреть 2 случая.

1) Случай малых затуханий b << w 0.

Потери энергии в системе малы. Решение имеет вид

x = A 0×exp (– b × t) × cos(w × t + j), (8)

где . Тогда период колебаний

(9)

увеличивается по сравнению с периодом незатухающих колебаний. Из выражения (8) следует, что амплитуда колебаний определяется следующим образом:

A (t) = A 0×exp (– b × t), (10)

т.е. со временем она убывает. Величина t = 1 / b называется временем релаксации – это время, в течение которого амплитуда колебаний уменьшается в e» 2,72 раз.

Изменение амплитуды колебаний во времени при не очень больших затуханиях показано на рисунке 2а, где пунктирные линии изображают функцию (10).

а б

Рисунок 2 Зависимость смещения от времени: а – случай

малых затуханий b << w 0; б – апериодический режим b > w 0

 

Из закона убывания амплитуд (10) следует, что отношение любых двух амплитуд, отстоящих друг от друга на один период, есть величина постоянная: A (t)/ A (t + T) = const = d.

Величину d называют декрементом затухания. Часто пользуются также понятием логарифмический декремент затухания l = ln d, который, как можно показать подстановкой d в (10) равен b × T. Отсюда b = l / T.

2) Случай b > w 0.

Потери энергии в системе велики. В этом случае в уравнении (7) третий член перестает играть существенную роль, и решение описывает апериодический режим движения (рисунок 2б).

Сопротивление среды, при котором колебания прекращаются, называется критическим. Оно находится из условия , или b = w 0: .

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 424 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2514 - | 2362 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.