Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Консервативные силы, потенциальная энергия и их связь, примеры




Консервативных сил.

В физике консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0.

 

Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.

Для консервативных сил выполняются следующие тождества:

— ротор консервативных сил равен 0;

 

— работа консервативных сил по произвольному замкнутому контуру равна 0;

— консервативная сила является градиентом некой скалярной функции U, называемой силовой. Эта функция равна потенциальной энергии взятой с обратным знаком.

В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила упругости. Примерами неконсервативных сил являются сила трения и сила сопротивления среды.

В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной

Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[1]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

 

Единицей измерения энергии в СИ является Джоуль.

 

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

 

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

 

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

 

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

 

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

 

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

Ep = mgh,

 

где Ep — потенциальная энергия тела, m — масса тела, g — ускорение свободного падения, h — высота положения центра масс тела над произвольно выбранным нулевым уровнем.

Закон сохранения энергии.

Если тело некоторой массы m двигалось под действием приложенных сил, и его скорость изменилась от до то силы совершили определенную работу A.

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Рисунок 1.19.1. Работа равнодействующей силы. . A = F 1 s cos α1 + F 2 s cos α2 = F 1s s + F 2s s = F рs s = F р s cos α.

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силы перемещения скорости и ускорения направлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматривать F, s, υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать как A = Fs. При равноускоренном движении перемещение s выражается формулой

   

Отсюда следует, что

   

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

 

 

 

Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии.

 
A = E k2 – Еk1.

 

 

Это утверждение называют теоремой о кинетической энергии. Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

   

Если тело движется со скоростью то для его полной остановки необходимо совершить работу

 

 

Закон сохранения энергии: в системе тел, между которыми действуют только консервативные силы, полная механ энергия сохраняется, т.е. не изменяется во времени. Eк + Ep = E = const. Энергия превращается из одного вида в другой. Полная энергия тела- сумма потенциальной и кинетической энергии тела. EK2+EP2=EK1+EP2.

 

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 9242 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.